Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39345400

RESUMO

Translocations involving FGFR2 gene fusions are common in cholangiocarcinoma and predict response to FGFR kinase inhibitors. However, the rate and durability of response are limited due to the emergence of resistance, typically involving acquired FGFR2 kinase domain mutations, and to sub-optimal dosing, relating to drug adverse effects. Here, we report the development of biparatopic antibodies targeting the FGFR2 extracellular domain (ECD), as candidate therapeutics. Biparatopic antibodies can overcome drawbacks of standard bivalent monoparatopic antibodies, which often show poor inhibitory or even agonist activity against oncogenic receptors. We show that oncogenic transformation by FGFR2 fusions requires an intact ECD. Moreover, by systematically generating biparatopic antibodies that target distinct epitope pairs along the FGFR2 ECD, we identified antibodies that effectively block signaling and malignant growth driven by FGFR2-fusions. Importantly, these antibodies demonstrate efficacy in vivo, synergy with FGFR inhibitors, and activity against FGFR2 fusions harboring kinase domain mutations. Thus, biparatopic antibodies may serve as new treatment options for patients with FGFR2-altered cholangiocarcinoma. Summary: We identify biparatopic FGFR2 antibodies that are effective against FGFR2 fusion driven cholangiocarcinoma.

2.
ACS Med Chem Lett ; 11(11): 2131-2138, 2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33209191

RESUMO

FK506-binding protein 35, FKBP35, has been implicated as an essential malarial enzyme. Rapamycin and FK506 exhibit antiplasmodium activity in cultured parasites. However, due to the highly conserved nature of the binding pockets of FKBPs and the immunosuppressive properties of these drugs, there is a need for compounds that selectively inhibit FKBP35 and lack the undesired side effects. In contrast to human FKBPs, FKBP35 contains a cysteine, C106, adjacent to the rapamycin binding pocket, providing an opportunity to develop targeted covalent inhibitors of Plasmodium FKBP35. Here, we synthesize inhibitors of FKBP35, show that they directly bind FKBP35 in a model cellular setting, selectively covalently modify C106, and exhibit antiplasmodium activity in blood-stage cultured parasites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA