Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(2): e13251, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36825193

RESUMO

Groundwater is one of the most important reservoirs in semi-arid and arid zones of the world, particularly in Mexico. The aims of this work were to produce a biosorbent from watermelon peel waste and a biosorbent with citric acid treatment and to evaluate both biosorbents with different concentrations of arsenic in groundwater. The biosorbents were produced with watermelon peel residues, which were observed by SEM microscopy to evaluate their physical morphology. Its removal potential was tested at concentrations of 0, 1, 13, 22, and 65 µg/L of arsenic, and both adsorption capacity and removal percentage were analyzed by final measurement obtained by atomic absorption spectrometry. The pH was measured throughout the experimentation maintaining ranges between 5.5 and 7.5. The biosorbent without treatment presented clearer and more compact flakes. At the microscopic level, the biosorbent without treatment presented pores with a more circular shape, and the biosorbent with treatment was more polygonal, similar to a honeycomb. The highest removal percentage was 99.99%, for both treatments at 4 h. The biosorbent without treatment at 4 h with arsenic concentrations of 65 µg/L presented the highest adsorption capacity (2.42 µg/g). It is concluded that watermelon peel biosorbent is a material that has the potential to remove arsenic from groundwater. This type of biosorbent is effective to remove arsenic and could be used in the field, however, it still needs to be optimized to convert it into a material completely suitable for large-scale use.

2.
Artigo em Inglês | MEDLINE | ID: mdl-35328945

RESUMO

The quantity and quality of the supply of fresh water to households, commercial areas, small industries, green spaces irrigation and public and private institutions in large cities face challenges from the supply sources availability and suitable distribution network performance to the full satisfaction of the established drinking water guidelines. In Mexico, the main source of water comes from groundwater. Most of the Mexican aquifers are located in arid and semi-arid weather conditions. The groundwater's physical-chemical properties are closely related to geology. This study was carried out at the north-central part of the country in which igneous and sedimentary rocks predominate, with high calcium carbonate (CaCO3) concentrations. The accumulation of CaCO3 in the pipelines is also known as scale deposit that decreases the fluid flow, causing a deficiency in the water supply. The main objectives of this study were determining the physical-chemical groundwater parameters and saturation indexes injected into the drinking water networks and characterizing the scale deposits by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results indicate that the scale deposits are mainly calcium carbonate and silica oxide crystals, caused by the water aggressiveness according to the saturation indexes and the lack of control over the saturation pH.


Assuntos
Água Potável , Água Subterrânea , Poluentes Químicos da Água , Carbonato de Cálcio , Água Potável/análise , Monitoramento Ambiental/métodos , Água Subterrânea/química , Poluentes Químicos da Água/análise , Qualidade da Água , Abastecimento de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...