Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gels ; 9(4)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37102948

RESUMO

Gel polymer electrolytes (GPEs) are emerging as suitable candidates for high-performing lithium-sulfur batteries (LSBs) due to their excellent performance and improved safety. Within them, poly(vinylidene difluoride) (PVdF) and its derivatives have been widely used as polymer hosts due to their ideal mechanical and electrochemical properties. However, their poor stability with lithium metal (Li0) anode has been identified as their main drawback. Here, the stability of two PVdF-based GPEs with Li0 and their application in LSBs is studied. PVdF-based GPEs undergo a dehydrofluorination process upon contact with the Li0. This process results in the formation of a LiF-rich solid electrolyte interphase that provides high stability during galvanostatic cycling. Nevertheless, despite their outstanding initial discharge, both GPEs show an unsuitable battery performance characterized by a capacity drop, ascribed to the loss of the lithium polysulfides and their interaction with the dehydrofluorinated polymer host. Through the introduction of an intriguing lithium salt (lithium nitrate) in the electrolyte, a significant improvement is achieved delivering higher capacity retention. Apart from providing a detailed study of the hitherto poorly characterized interaction process between PVdF-based GPEs and the Li0, this study demonstrates the need for an anode protection process to use this type of electrolytes in LSBs.

2.
Dalton Trans ; 49(40): 14280-14289, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33030155

RESUMO

Aluminium-doped lanthanum silicate (LSAO) apatite-type compounds have been considered as promising candidates for substituting yttria-stabilized zirconia (YSZ) as electrolytes for intermediate temperature solid oxide fuel cells (IT-SOFC). Nevertheless, not many materials have been reported to work as cathodes in a LSAO apatite-based cell. In the present work, eight different strontium and cobalt-free compounds with a perovskite-type structure and the general composition LaM1-xNxO3-δ (where M = Fe, Cr, Mn; N = Cu, Ni; and x = 0.2, 0.3) have been tested. This study includes the synthesis and structural characterization of the compounds, as well as thermomechanical and chemical compatibility tests between them. Functional characterization of the individual components has been performed by electrochemical impedance spectroscopy (EIS). Apatite/perovskite symmetrical cells were used to measure area-specific resistance (ASR) of the half cell in an intermediate temperature range (500-850 °C) both with and without DC bias. According to its electrochemical behaviour, LaFe0.8Cu0.2O3-δ is the most promising material for IT-SOFC among the compositions tested since its ASR is similar to that of the traditional (LaxSr1-x)MnO3 (LSM) cathode.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...