Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Arid Environ ; 75(10): 917-925, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21779135

RESUMO

The effects of elevated atmospheric carbon dioxide [CO(2)] on microbial communities in arid rhizosphere soils beneath Larrea tridentata were examined. Roots of Larrea were harvested from plots fumigated with elevated or ambient levels of [CO(2)] using Free-Air CO(2) Enrichment (FACE) technology. Twelve bacterial and fungal rRNA gene libraries were constructed, sequenced and categorized into operational taxonomical units (OTUs). There was a significant decrease in OTUs within the Firmicutes (bacteria) in elevated [CO(2)], and increase in Basiomycota (fungi) in rhizosphere soils of plots exposed to ambient [CO(2)]. Phylogenetic analyses indicated that OTUs belonged to a wide range of bacterial and fungal taxa. To further study changes in bacterial communities, Quantitative Polymerase Chain Reaction (QPCR) was used to quantify populations of bacteria in rhizosphere soil. The concentration of total bacteria 16S rDNA was similar in conditions of enriched and ambient [CO(2)]. However, QPCR of Gram-positive microorganisms showed a 43% decrease in the population in elevated [CO(2)]. The decrease in representation of Gram positives and the similar values for total bacterial DNA suggest that the representation of other bacterial taxa was promoted by elevated [CO(2)]. These results indicate that elevated [CO(2)] changes structure and representation of microorganisms associated with roots of desert plants.

2.
Appl Environ Microbiol ; 67(2): 852-7, 2001 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11157254

RESUMO

A soil plot was inoculated with a mixture of Pseudomonas fluorescens Pf0-2, the wild type, and Pf0-5a, a Tn5 insertion mutant in adnA, at 7.84 log CFU/g of soil. Over a period of 231 days, culturable populations of both strains were measured at selected times below and away from the point of inoculation. Pf0-5a did not spread as fast and attained significantly lower populations than Pf0-2. At sample depths below the inoculation site, the adnA mutant showed a significant decrease in CFU/g of soil as compared to Pf0-2. Pf0-2 was first detected at the 1.5-cm annular site at 3 days after inoculation, whereas Pf0-5a required 7 days to travel the same distance. At this distance, the wild-type strain could be detected at a 21.5- to 25-cm depth, whereas Pf0-5a could be detected only as deep as 15.5 to 18 cm. At 4.5 cm from the site of inoculation and in soil fractions corresponding to 13 to 18 cm, Pf0-2 was the only strain detected. These results suggest that the transcription factor AdnA provides a fitness advantage in P. fluorescens, allowing it to spread and survive in soil under field conditions.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Pseudomonas fluorescens/crescimento & desenvolvimento , Microbiologia do Solo , Proteínas de Bactérias/metabolismo , Pseudomonas fluorescens/genética
3.
Appl Environ Microbiol ; 64(5): 1657-62, 1998 May.
Artigo em Inglês | MEDLINE | ID: mdl-9572932

RESUMO

Improved nitrogen-fixing inoculum strains for leguminous crops must be able to effectively compete with indigenous strains for nodulation, enhance legume productivity compared to the productivity obtained with indigenous strains, and maintain stable expression of any added genes in the absence of selection pressure. We constructed a transposable element containing the tfx region for expression of increased nodulation competitiveness and the par locus for plasmid stability. The transposon was inserted into tetA of pHU52, a broad-host-range plasmid conferring the H2 uptake phenotype. The resulting plasmid, pHUTFXPAR, conferred the plasmid stability, trifolitoxin production, and H2 uptake phenotypes in the broad-host-range organism Sinorhizobium sp. strain ANU280. The broad applications of a transposon conferring plasmid stability are discussed.


Assuntos
Antibacterianos , Elementos de DNA Transponíveis , Hidrogênio/metabolismo , Oligopeptídeos/genética , Peptídeos , Plasmídeos , Rhizobium/genética , Clonagem Molecular , Oligopeptídeos/biossíntese , Oxirredução
4.
Appl Environ Microbiol ; 60(5): 1430-6, 1994 May.
Artigo em Inglês | MEDLINE | ID: mdl-16349248

RESUMO

We isolated and characterized CE3003, a Tn5-induced mutant with altered colony morphology derived from Rhizobium etli CE3. CE3003 produced domed colonies and was highly hydrophobic as indicated by its ability to partition into hexadecane, whereas its parent produced flat colonies and was hydrophilic. On bean plants, CE3003 induced nodules and reduced acetylene. CE3003 and CE3 grew at similar rates when they were grown separately or together in culture medium or inoculated singly onto bean seeds. However, when they were mixed at a 1:1 ratio and applied to seeds, CE3003 achieved significantly lower populations than CE3 in the rhizosphere. Five days after coinoculation of CE3 and CE3003, the population of the mutant was less than 10% of the population of CE3 in the bean rhizosphere. To determine the nodulation competitiveness of the mutant, it was coinoculated with CE3 at various ratios at planting, and the ratio of the nodules occupied by each strain was determined 21 days later. A 17,000-fold excess of CE3003 in mixed inocula was required to obtain equal nodule occupancy by the two strains. A genomic library of strain CE3 was mobilized into CE3003, and we identified a cosmid, pRA3003, that restored the parental colony morphology and hydrophilicity to the mutant. Restoration of the parental colony morphology was accompanied by recovery of the ability to grow competitively in the rhizosphere and to compete for nodulation of beans. The data show an association between cell surface hydrophobicity, nodulation competitiveness, and competitive growth in the rhizosphere in mutant CE3003.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...