Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 8(6): e65639, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23822972

RESUMO

Genomic imprinting results in parent-of-origin-dependent monoallelic gene expression. Early work showed that distal mouse chromosome 2 is imprinted, as maternal and paternal duplications of the region (with corresponding paternal and maternal deficiencies) give rise to different anomalous phenotypes with early postnatal lethalities. Newborns with maternal duplication (MatDp(dist2)) are long, thin and hypoactive whereas those with paternal duplication (PatDp(dist2)) are chunky, oedematous, and hyperactive. Here we focus on PatDp(dist2). Loss of expression of the maternally expressed Gnas transcript at the Gnas cluster has been thought to account for the PatDp(dist2) phenotype. But PatDp(dist2) also have two expressed doses of the paternally expressed Gnasxl transcript. Through the use of targeted mutations, we have generated PatDp(dist2) mice predicted to have 1 or 2 expressed doses of Gnasxl, and 0, 1 or 2 expressed doses of Gnas. We confirm that oedema is due to lack of expression of imprinted Gnas alone. We show that it is the combination of a double dose of Gnasxl, with no dose of imprinted Gnas, that gives rise to the characteristic hyperactive, chunky, oedematous, lethal PatDp(dist2) phenotype, which is also hypoglycaemic. However PatDp(dist2) mice in which the dosage of the Gnasxl and Gnas is balanced (either 2∶2 or 1∶1) are neither dysmorphic nor hyperactive, have normal glucose levels, and are fully viable. But PatDp(dist2) with biallelic expression of both Gnasxl and Gnas show a marked postnatal growth retardation. Our results show that most of the PatDp(dist2) phenotype is due to overexpression of Gnasxl combined with loss of expression of Gnas, and suggest that Gnasxl and Gnas may act antagonistically in a number of tissues and to cause a wide range of phenotypic effects. It can be concluded that monoallelic expression of both Gnasxl and Gnas is a requirement for normal postnatal growth and development.


Assuntos
Cromograninas/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Dosagem de Genes , Impressão Genômica , Família Multigênica , Absorciometria de Fóton , Animais , Animais Recém-Nascidos , Transtornos do Crescimento , Camundongos
2.
RNA ; 18(1): 135-44, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22114321

RESUMO

Genomic imprinting is the phenomenon whereby a subset of genes is differentially expressed according to parental origin. Imprinted genes tend to occur in clusters, and microRNAs are associated with the majority of well-defined clusters of imprinted genes. We show here that two microRNAs, miR-296 and miR-298, are part of the imprinted Gnas/GNAS clusters in both mice and humans. Both microRNAs show imprinted expression and are expressed from the paternally derived allele, but not the maternal allele. They arise from a long, noncoding antisense transcript, Nespas, with a promoter more than 27 kb away. Nespas had been shown previously to act in cis to regulate imprinted gene expression within the Gnas cluster. Using microarrays and luciferase assays, IKBKE, involved in many signaling pathways, and Tmed9, a protein transporter, were verified as new targets of miR-296. Thus, Nespas has two clear functions: as a cis-acting regulator within an imprinted gene cluster and as a precursor of microRNAs that modulate gene expression in trans. Furthermore, imprinted microRNAs, including miR-296 and miR-298, impose a parental specific modulation of gene expression of their target genes.


Assuntos
Impressão Genômica , MicroRNAs/genética , Família Multigênica/genética , Animais , Cromograninas , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Células HeLa , Humanos , Quinase I-kappa B/genética , Camundongos , Células NIH 3T3
3.
Dev Dyn ; 238(3): 581-94, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19235720

RESUMO

Vertebrate organs show consistent left-right (L-R) asymmetry in placement and patterning. To identify genes involved in this process we performed an ENU-based genetic screen. Of 135 lines analyzed 11 showed clear single gene defects affecting L-R patterning, including 3 new alleles of known L-R genes and mutants in novel L-R loci. We identified six lines (termed "gasping") that, in addition to abnormal L-R patterning and associated cardiovascular defects, had complex phenotypes including pulmonary agenesis, exencephaly, polydactyly, ocular and craniofacial malformations. These complex abnormalities are present in certain human disease syndromes (e.g., HYLS, SRPS, VACTERL). Gasping embryos also show defects in ciliogenesis, suggesting a role for cilia in these human congenital malformation syndromes. Our results indicate that genes controlling ciliogenesis and left-right asymmetry have, in addition to their known roles in cardiac patterning, major and unexpected roles in pulmonary, craniofacial, ocular and limb development with implications for human congenital malformation syndromes.


Assuntos
Padronização Corporal/genética , Extremidades/embriologia , Olho/embriologia , Ossos Faciais/embriologia , Mutagênese/genética , Sistema Respiratório/embriologia , Sequência de Aminoácidos , Animais , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Olho/metabolismo , Ossos Faciais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Camundongos , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Mutação/genética , Fenótipo , Sistema Respiratório/metabolismo , Alinhamento de Sequência
4.
Mamm Genome ; 19(7-8): 493-502, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18815833

RESUMO

Imprinted genes are silenced in a parental-specific manner and tend to occur in clusters. All well-characterised imprinted clusters contain noncoding RNAs that are silenced according to parental origin. These can be broadly classified into long noncoding RNAs and short regulatory RNAs. Functional testing has shown that long noncoding RNAs can be crucial imprinting elements and act in cis throughout the cluster to silence protein-coding genes. Whether silencing occurs via transcription of the noncoding RNA or the actual transcript is not clear. The short regulatory RNAs, both small nucleolar RNAs and microRNAs, act in trans, generally outside the cluster from which they arise. As these RNAs are expressed according to parental origin, the regulation of their targets is also parental-specific. We review knowledge of imprinted noncoding RNAs and models for how they function.


Assuntos
Impressão Genômica/genética , RNA não Traduzido/genética , Animais , Inativação Gênica , Humanos , Família Multigênica , RNA Antissenso/genética , RNA Nucleolar Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...