Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Model ; 30(6): 177, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775913

RESUMO

CONTEXT: Bismuth complexes with dithiocarbamate ligands have attracted attention because of their biological applications, such as antimicrobial, antileishmanial, and anticancer properties. These complexes have high cytotoxic activity against cancer cells, being more active than the standard drugs cisplatin, doxorubicin, and tamoxifen. In the present study, we investigated the ability of some DFT methods to reproduce the geometries and NMR spectra of the Bi(III) dithiocarbamate complexes, selected based on their proven antitumor activity. Our investigation revealed that the M06-L/def2-TZVP/ECP/CPCM method presented good accuracy in predicting geometries, while the TPSSh/def2-SVP/ECP/CPCM method proved effective in analyzing the 13C NMR spectra of these molecules. In general, all examined methods exhibited comparable performance in predicting 1H NMR signals. METHODS: Calculations were performed with the Gaussian 09 program using the def2-SVP and def2-TZVP basis sets, employing relativistic effective core potential (ECP) for Bi and using the CPCM solvent model. The exchange-correlation functionals BP86, PBE, OLYP, M06-L, B3LYP, B3LYP-D3, M06-2X, TPSSh, CAM-B3LYP, and ωB97XD were used in the study. Geometry optimizations were started from crystallographic structures available at the Cambridge Structural Database. The theoretical results were compared with experimental data using the mean root-mean-square deviation (RMSD), mean absolute deviations (MAD), and linear correlation coefficient (R2).


Assuntos
Antineoplásicos , Teoria da Densidade Funcional , Espectroscopia de Ressonância Magnética , Tiocarbamatos , Antineoplásicos/química , Antineoplásicos/farmacologia , Tiocarbamatos/química , Espectroscopia de Ressonância Magnética/métodos , Bismuto/química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Modelos Moleculares , Humanos
2.
Pharmaceutics ; 15(10)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37896254

RESUMO

Arthropod-borne viruses within the Flaviviridae family such as Zika (ZIKV) and dengue (DENV) are responsible for major outbreaks in tropical countries, and there are no specific treatments against them. Naringenin and 7-O-methyl naringenin are flavonoids that can be extracted from geopropolis, a natural material that the Brazilian Jandaira stingless bee (Melipona subnitida Ducke) produces to protect its nest. Here, these flavonoids were tested against ZIKV and DENV using Vero cells as a cellular model to perform a cytotoxicity assay and to define the effective concentrations of TCID50 as the readout method. The results demonstrated the antiviral activity of the compounds against both viruses upon the treatment of infected cells. The tested flavonoids had antiviral activity comparable with 6-methylmercaptopurine riboside (6-MMPr), used here as a positive control. In addition, to identify the possible action mechanism of the antiviral candidates, we carried out a docking analysis followed by a molecular dynamics simulation to elucidate naringenin and 7-O-methyl naringenin binding sites to each virus. Altogether, these results demonstrate that both flavonoids have potent antiviral effects against both viruses and warrant further in vivo trials.

3.
J Chem Phys ; 158(20)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37222301

RESUMO

In this Review, we reviewed the efforts to expand the applications of conceptual density functional theory reactivity descriptors and hard and soft acid and base principles for macromolecules and other strategies that focused on low-level quantum chemistry methods. Currently, recent applications are taking advantage of modifications of these descriptors using semiempirical electronic structures to explain enzymatic catalysis reactions, protein-binding processes, and structural analysis in proteins. We have explored these new solutions along with their implementations in the software PRIMoRDiA, discussing their impact on the field and its perspectives. We show the main issues in the analysis of the electronic structure of macromolecules, which are the application of the same calculation protocols used for small molecules without considering particularities in those large systems' electronic configuration. The major result of our discussions is that the use of semiempirical methods is crucial to obtain such a type of analysis, which can provide a powerful dimension of information and be part of future low-cost predictive tools. We expect semiempirical methods continue playing an important role in the quantum chemistry evaluation of large molecules. As computational resources advance, semiempirical methods might lead us to explore the electronic structure of even larger biological macromolecular entities and sets of structures representing larger timescales.


Assuntos
Software , Catálise
4.
J Mol Model ; 28(4): 108, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35357594

RESUMO

The role of knots in proteins remains elusive. Some studies suggest an impact on stability; the difficulty in comparing systems to assess this effect, however, has been a significant challenge. In this study, we produced and analyzed molecular dynamic trajectories considering three different temperatures of two variants of ornithine transcarbamylase (OTC), only one of which has a 31 knot, in order to evaluate the relative stability of the two molecules. RMSD showed equilibrated structures for the produced trajectories, and RMSF showed subtle differences in flexibility. In the knot moiety, the knotted protein did not show a great deal of fluctuation at any temperature. For the unknotted protein, the residue GLY243 showed a high fluctuation in the corresponding moiety. The fraction of native contacts (Q) showed a similar profile at all temperatures, with the greatest decrease by 436 K. The investigation of conformational behavior with principal component analysis (PCA) and dynamic cross-correlation map (DCCM) showed that knotted protein is less likely to undergo changes in its conformation under the conditions employed compared to unknotted. PCA data showed that the unknotted protein had greater dispersion in its conformations, which suggests that it has a greater capacity for conformation transitions in response to thermal changes. DCCM graphs comparing the 310 K and 436 K temperatures showed that the knotted protein had less change in its correlation and anti-correlation movements, indicating stability compared to the unknotted.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Conformação Proteica , Proteínas/química
5.
PeerJ ; 10: e13099, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35341044

RESUMO

Background: The SARS-CoV-2 pandemic reverberated, posing health and social hygiene obstacles throughout the globe. Mutant lineages of the virus have concerned scientists because of convergent amino acid alterations, mainly on the viral spike protein. Studies have shown that mutants have diminished activity of neutralizing antibodies and enhanced affinity with its human cell receptor, the ACE2 protein. Methods: Hence, for real-time measuring of the impacts caused by variant strains in such complexes, we implemented E-Volve, a tool designed to model a structure with a list of mutations requested by users and return analyses of the variant protein. As a proof of concept, we scrutinized the spike-antibody and spike-ACE2 complexes formed in the variants of concern, B.1.1.7 (Alpha), B.1.351 (Beta), and P.1 (Gamma), by using contact maps depicting the interactions made amid them, along with heat maps to quantify these major interactions. Results: The results found in this study depict the highly frequent interface changes made by the entire set of mutations, mainly conducted by N501Y and E484K. In the spike-Antibody complex, we have noticed alterations concerning electrostatic surface complementarity, breaching essential sites in the P17 and BD-368-2 antibodies. Alongside, the spike-ACE2 complex has presented new hydrophobic bonds. Discussion: Molecular dynamics simulations followed by Poisson-Boltzmann calculations corroborate the higher complementarity to the receptor and lower to the antibodies for the K417T/E484K/N501Y (Gamma) mutant compared to the wild-type strain, as pointed by E-Volve, as well as an intensification of this effect by changes at the protein conformational equilibrium in solution. A local disorder of the loop α1'/ß1', as well its possible effects on the affinity to the BD-368-2 antibody were also incorporated to the final conclusions after this analysis. Moreover, E-Volve can depict the main alterations in important biological structures, as shown in the SARS-CoV-2 complexes, marking a major step in the real-time tracking of the virus mutant lineages. E-Volve is available at http://bioinfo.dcc.ufmg.br/evolve.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Enzima de Conversão de Angiotensina 2/genética , Glicoproteína da Espícula de Coronavírus/genética , COVID-19/epidemiologia , Anticorpos Neutralizantes , Mutação
6.
J Biomol Struct Dyn ; 40(12): 5427-5445, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-33526002

RESUMO

Ricin is a potent toxin derived from the castor bean plant and comprises two subunits, RTA and RTB. Because of its cytotoxicity, ricin has alarmed world authorities for its potential use as a chemical weapon. Ricin also affects castor bean agribusiness, given the risk of animal and human poisoning. Over the years, many groups attempted to propose small-molecules that bind to the RTA active site, the catalytic chain. Despite such efforts, there is still no effective countermeasure against ricin poisoning. The computational study carried out in the present work renews the discussion about small-molecules that may inhibit this toxin. Here, a structure-based virtual screening protocol capable of discerning active RTA inhibitors from inactive ones was performed to screen over 2 million compounds from the ZINC database to find novel scaffolds that strongly bind into the active site of the RTA. Besides, a novel score method based on ligand undocking force profiles and semi-empirical quantum chemical calculations provided insights into the rescore of docking poses. Summing up, the filtering steps pointed out seven main compounds, with the SCF00-451 as a promising candidate to inhibit the killing activity of such potent phytotoxin.


Assuntos
Ricina , Toxinas Biológicas , Animais , Humanos , Ligantes , Simulação de Dinâmica Molecular , Ricina/química , Ricina/metabolismo , Ricina/farmacologia
7.
J Biomol Struct Dyn ; 40(19): 9214-9234, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33970798

RESUMO

The main-protease (Mpro) catalyzes a crucial step for the SARS-CoV-2 life cycle. The recent SARS-CoV-2 presents the main protease (MCoV2pro) with 12 mutations compared to SARS-CoV (MCoV1pro). Recent studies point out that these subtle differences lead to mobility variances at the active site loops with functional implications. We use metadynamics simulations and a sort of computational analysis to probe the dynamic, pharmacophoric and catalytic environment differences between the monomers of both enzymes. So, we verify how much intrinsic distinctions are preserved in the functional dimer of MCoV2pro, as well as its implications for ligand accessibility and optimized drug screening. We find a significantly higher accessibility to open binding conformers in the MCoV2pro monomer compared to MCoV1pro. A higher hydration propensity for the MCoV2pro S2 loop with the A46S substitution seems to exercise a key role. Quantum calculations suggest that the wider conformations for MCoV2pro are less catalytically active in the monomer. However, the statistics for contacts involving the N-finger suggest higher maintenance of this activity at the dimer. Docking analyses suggest that the ability to vary the active site width can be important to improve the access of the ligand to the active site in different ways. So, we carry out a multiconformational virtual screening with different ligand bases. The results point to the importance of taking into account the protein conformational multiplicity for new promissors anti MCoV2pro ligands. We hope these results will be useful in prospecting, repurposing and/or designing new anti SARS-CoV-2 drugs.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Domínio Catalítico , Ligantes , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Proteínas não Estruturais Virais/química , Antivirais/farmacologia , Antivirais/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Cisteína Endopeptidases/química
8.
ACS Omega ; 6(13): 8764-8777, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33842748

RESUMO

In this work, we performed a study to assess the interactions between the ricin toxin A (RTA) subunit of ricin and some of its inhibitors using modern semiempirical quantum chemistry and ONIOM quantum mechanics/molecular mechanics (QM/MM) methods. Two approaches were followed (calculation of binding enthalpies, ΔH bind, and reactivity quantum chemical descriptors) and compared with the respective half-maximal inhibitory concentration (IC50) experimental data, to gain insight into RTA inhibitors and verify which quantum chemical method would better describe RTA-ligand interactions. The geometries for all RTA-ligand complexes were obtained after running classical molecular dynamics simulations in aqueous media. We found that single-point energy calculations of ΔH bind with the PM6-DH+, PM6-D3H4, and PM7 semiempirical methods and ONIOM QM/MM presented a good correlation with the IC50 data. We also observed, however, that the correlation decreased significantly when we calculated ΔH bind after full-atom geometry optimization with all semiempirical methods. Based on the results from reactivity descriptors calculations for the cases studied, we noted that both types of interactions, molecular overlap and electrostatic interactions, play significant roles in the overall affinity of these ligands for the RTA binding pocket.

9.
J Biomol Struct Dyn ; 39(11): 3924-3933, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32448085

RESUMO

Herein, molecular modeling techniques were used with the main goal to obtain candidates from a drug database as potential targets to be used against SARS-CoV-2. This novel coronavirus, responsible by the COVID-19 outbreak since the end of 2019, became a challenge since there is not vaccine for this disease. The first step in this investigation was to solvate the isolated S-protein in water for molecular dynamics (MD) simulation, being observed a transition from "up" to "down" conformation of receptor-binding domain (RBD) of the S-protein with angle of 54.3 and 43.0 degrees, respectively. The RBD region was more exposed to the solvent and to the possible drugs due to its enhanced surface area. From the equilibrated MD structure, virtual screening by docking calculations were performed using a library contained 9091 FDA approved drugs. Among them, 24 best-scored ligands (14 traditional herbal isolate and 10 approved drugs) with the binding energy below -8.1 kcal/mol were selected as potential candidates to inhibit the SARS-CoV-2 S-protein, preventing the human cell infection and their replication. For instance, the ivermectin drug (present in our list of promise candidates) was recently used successful to control viral replication in vitro. MD simulations were performed for the three best ligands@S-protein complexes and the binding energies were calculated using the MM/PBSA approach. Overall, it is highlighted an important strategy, some key residues, and chemical groups which may be considered on clinical trials for COVID-19 outbreak. [Formula: see text]Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , Preparações Farmacêuticas , Reposicionamento de Medicamentos , Humanos , Simulação de Acoplamento Molecular , SARS-CoV-2
10.
J Chem Inf Model ; 60(12): 5885-5890, 2020 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-33186016

RESUMO

Plenty of enzymes with structural data do not have their mechanism of catalysis elucidated. Reactivity descriptors, theoretical quantities generated from resolved electronic structure, provide a way to predict and rationalize chemical processes of such systems. In this Application Note, we present PRIMoRDiA (PRIMoRDiA Macromolecular Reactivity Descriptors Access), a software built to calculate the reactivity descriptors of large biosystems by employing an efficient and accurate treatment of the large output files produced by quantum chemistry packages. Here, we show the general implementation details and the software main features. Calculated descriptors were applied for a set of enzymatic systems in order to show their relevance for biological studies and the software potential for use in large scale. Also, we test PRIMoRDiA to aid in the interaction depiction between the SARS-CoV-2 main protease and a potential inhibitor.


Assuntos
Simulação por Computador , Modelos Moleculares , Software , COVID-19/metabolismo , Domínio Catalítico , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/metabolismo , Desenho de Fármacos , Eletrônica , Humanos , Conformação Molecular , Relação Quantitativa Estrutura-Atividade , SARS-CoV-2/metabolismo , Eletricidade Estática , Inibidores de Protease Viral/química , Inibidores de Protease Viral/metabolismo
11.
J Mol Model ; 26(11): 297, 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33030705

RESUMO

In this study, we have investigated the enzyme shikimate 5-dehydrogenase from the causative agent of tuberculosis, Mycobacterium tuberculosis. We have employed a mixture of computational techniques, including molecular dynamics, hybrid quantum chemical/molecular mechanical potentials, relaxed surface scans, quantum chemical descriptors and free-energy simulations, to elucidate the enzyme's reaction pathway. Overall, we find a two-step mechanism, with a single transition state, that proceeds by an energetically uphill hydride transfer, followed by an energetically downhill proton transfer. Our mechanism and calculated free energy barrier for the reaction, 64.9 kJ mol- 1, are in good agreement with those predicted from experiment. An analysis of quantum chemical descriptors along the reaction pathway indicated a possibly important, yet currently unreported, role of the active site threonine residue, Thr65.


Assuntos
Oxirredutases do Álcool/metabolismo , Simulação de Dinâmica Molecular , Mycobacterium tuberculosis/enzimologia , Teoria Quântica , Oxirredutases do Álcool/química , Biocatálise , Especificidade por Substrato
12.
J Mol Model ; 26(11): 313, 2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33090341

RESUMO

Purification of the density matrix methods should be employed when dealing with complex chemical systems containing many atoms. The running times for these methods scale linearly with the number of atoms if we consider the sparsity from the density matrix. Since the efficiency expected from those methods is closely tied to the underlying parallel implementations of the linear algebra operations (e.g., P2 = P × P), we proposed a central processing unit (CPU) and graphics processing unit (GPU) parallel matrix-matrix multiplication in SVBR (symmetrical variable block row) format for energy calculations through the SP2 algorithm. This algorithm was inserted in MOPAC's MOZYME method, using the original LMO Fock matrix assembly, and the atomic integral calculation implemented on it. Correctness and performance tests show that the implemented SP2 is accurate and fast, as the GPU is able to achieve speedups up to 40 times for a water cluster system with 42,312 orbitals running in one NVIDIA K40 GPU card compared to the single-threaded version. The GPU-accelerated SP2 algorithm using the MOZYME LMO framework enables the calculations of semiempirical wavefunction with stricter SCF criteria for localized charged molecular systems, as well as the single-point energies of molecules with more than 100.000 LMO orbitals in less than 1 h. Graphical abstract Parallel CPU and GPU purification algorithms for electronic structure calculations were implemented in MOPAC's MOZYME method. Some matrices in these calculations, e.g., electron density P, are compressed, and the developed linear algebra operations deal with non-zero entries only. We employed the NVIDIA/CUDA platform to develop GPU algorithms, and accelerations up to 40 times for larger systems were achieved.

13.
J Chem Inf Model ; 60(2): 578-591, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-31895567

RESUMO

In general, computational simulations of enzymatic catalysis processes are thermodynamic and structural surveys to complement experimental studies, requiring high level computational methods to match accurate energy values. In the present work, we propose the usage of reactivity descriptors, theoretical quantities calculated from the electronic structure, to characterize enzymatic catalysis outlining its reaction profile using low-level computational methods, such as semiempirical Hamiltonians. We simulate three enzymatic reactions paths, one containing two reaction coordinates and without prior computational study performed, and calculate the reactivity descriptors for all obtained structures. We observed that the active site local hardness does not change substantially, even more so for the amino-acid residues that are said to stabilize the reaction structures. This corroborates with the theory that activation energy lowering is caused by the electrostatic environment of the active sites. Also, for the quantities describing the atom electrophilicity and nucleophilicity, we observed abrupt changes along the reaction coordinates, which also shows the enzyme participation as a reactant in the catalyzed reaction. We expect that such electronic structure analysis allows the expedient proposition and/or prediction of new mechanisms, providing chemical characterization of the enzyme active sites, thus hastening the process of transforming the resolved protein three-dimensional structures in catalytic information.


Assuntos
Biocatálise , Enzimas/metabolismo , Teoria Quântica , Domínio Catalítico , Enzimas/química , Modelos Moleculares , Termodinâmica
14.
J Comput Chem ; 41(9): 862-873, 2020 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-31960470

RESUMO

Obtaining reactivity information from the molecular electronic structure of a chemical system is a computationally intensive process. As a way of probing reactivity information around that, there exist electron density response variables, such as the Fukui functions (FFs), which are well-established descriptors that summarize the local susceptibility to react. These properties only require few single-point quantum chemical calculations, but even then, the intrinsic high cost and unfavorable computational complexity with respect to the number of atoms in the system makes this approach available only to small fragments and systems. In this study, we explore the computation of FFs, showing that semiempirical quantum chemical methods can be used to obtain the reactivity information equivalent to that of a Density Functional Theory (DFT) functional, for the eight entire polypeptide chains. The combination of semiempirical methods with the frozen orbital approximation allows for the obtention of these reactivity descriptors for biological systems with reasonable accuracy and speed, unlocking the utilization of these methods for such systems. These results for the frozen orbital approximation can be additionally improved when other molecular orbitals from the frontier band are employed in the computation. We also show the potential of this computational protocol in the ligand-protein complexes of HIV-1 protease, predicting which of those ligands are active inhibitors.


Assuntos
Teoria da Densidade Funcional , Inibidores da Protease de HIV/química , Inibidores da Protease de HIV/farmacologia , Protease de HIV/química , Elétrons , Protease de HIV/metabolismo , Ligantes , Modelos Moleculares
15.
J Comput Chem ; 39(24): 2022-2032, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-30315586

RESUMO

An algorithm for the efficient computation of Canterakis-Zernike moments of theoretically computed molecular electron densities and rotationally invariant Fingerprint indices derived from them is reported. The algorithm is suitable for any density expressed in terms of Gaussian- or Slater-type functions within the Linear Combination of Atomic Orbitals framework at any level of computation. Electron density is expressed as a one-center expansion of real regular spherical harmonics times radial factors by means of translation techniques, which facilitates the efficient computation of the moments in terms of a single one-dimension numerical integration. The performance of the algorithm is analyzed showing that the computation of radial factors in the quadrature points is responsible for almost all computational time. The procedure is applicable to any density obtained with standard packages for molecular structure calculations. © 2018 Wiley Periodicals, Inc.

16.
J Chem Inf Model ; 58(6): 1205-1213, 2018 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-29750861

RESUMO

Ricin is a ribosome-inactivating protein (RIP type 2) consisting of two subunits, ricin toxin A (RTA) and ricin toxin B (RTB). Because of its cytotoxicity, ricin has worried world authorities for its potential use as a chemical weapon; therefore, its inhibition is of great biotechnological interest. RTA is the target for inhibitor synthesis, and pterin derivatives are promising candidates to inhibit it. In this study, we used a combination of the molecular docking approach and fast steered molecular dynamics (SMD) to assess the correlation between nonequilibrium work, ⟨ W⟩, and the IC50 for six RTA inhibitors. The results showed that molecular docking is a powerful tool to predict good bioactive poses of RTA inhibitors, and ⟨ W⟩ presented a strong correlation with IC50 ( R2 = 0.961). Such a profile ranked the RTA inhibitors better than the molecular docking approach. Therefore, the combination of docking and fast SMD simulation was shown to be a promising tool to distinguish RTA-active inhibitors from inactive ones and could be used as postdocking filtering approach.


Assuntos
Antitoxinas/química , Antitoxinas/farmacologia , Pterinas/química , Pterinas/farmacologia , Ricina/antagonistas & inibidores , Ricina/metabolismo , Substâncias para a Guerra Química/química , Substâncias para a Guerra Química/metabolismo , Humanos , Ligantes , Simulação de Acoplamento Molecular , Ricina/química , Ricinus/química
17.
Nat Methods ; 15(5): 351-354, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29578535

RESUMO

Hybrid methods that combine quantum mechanics (QM) and molecular mechanics (MM) can be applied to studies of reaction mechanisms in locations ranging from active sites of small enzymes to multiple sites in large bioenergetic complexes. By combining the widely used molecular dynamics and visualization programs NAMD and VMD with the quantum chemistry packages ORCA and MOPAC, we created an integrated, comprehensive, customizable, and easy-to-use suite (http://www.ks.uiuc.edu/Research/qmmm). Through the QwikMD interface, setup, execution, visualization, and analysis are streamlined for all levels of expertise.


Assuntos
Simulação por Computador , Modelos Biológicos , Modelos Químicos , Teoria Quântica , Software , Simulação de Dinâmica Molecular , Eletricidade Estática
18.
J Mol Model ; 23(12): 363, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-29192384

RESUMO

The present work assessed several exchange-correlation functionals (including GGA, meta-GGA and hybrid functionals), in combination with a variety of basis sets and effective core potentials (ECP) for their ability to predict the ground spin state of Mn(III) meso-tetraphenylporphyrin chloride complex, labeled Mn(III)TPPCl, for which experimental data support the quintet high spin state. Geometry optimization of Mn(III)TPPCl was performed for three possible spin states (singlet state, LS; triplet state, IS; and quintet state, HS) at the TPSSh level using the LANL2DZ ECP for Mn and the 6-311G(d) basis set for C, N, Cl and H. Afterwards, single-point energy calculations were conducted by applying 18 exchange-correlation functionals (BLYP, B3LYP, PW91, BPW91, BP86, OLYP, OPBE, OPW91, O3LYP, PBE0, PBEh1PBE, HSEH1PBE, TPSS, TPSSh, M06 L, M06, M062X and M06HF). The influence of the basis set for the metal center was assessed using a smaller group of functionals and varying between the Pople basis set 6-31G(d), its newer formulation m6-31G(d) and the larger Def2-QZVP basis set. All functionals in combination with Pople basis sets predict the quintet state as the ground spin state. In addition, the BLYP, BP86, BPW91, PW91, PBEh1PBE, TPSS and TPSSh functionals predicted the IS lying at most ~60 kJ mol-1 above the HS, which agrees with the reference data. Results including Def2-QZVP basis set were inconsistent, since only BLYP and B3LYP predict HS as the ground spin state. The recommended methodology for the treatment of such systems seems to be exchange-correlations functionals with few or none Hartree-Fock exchange and modest size basis sets. Graphical Abstract MnTPPCl molecule and the energy ordering of its spin states assessed by 18 functionals.

19.
J Comput Chem ; 37(21): 1962-72, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27249629

RESUMO

In this work, we tested the PM6, PM6-DH+, PM6-D3, and PM7 enthalpies of formation in aqueous solution as scoring functions across 33 decoy sets to discriminate native structures or good models in a decoy set. In each set these semiempirical quantum chemistry methods were compared according to enthalpic and geometric criteria. Enthalpically, we compared the methods according to how much lower was the enthalpy of each native, when compared with the mean enthalpy of its set. Geometrically, we compared the methods according to the fraction of native contacts (Q), which is a measure of geometric closeness between an arbitrary structure and the native. For each set and method, the Q of the best decoy was compared with the Q0 , which is the Q of the decoy closest to the native in the set. It was shown that the PM7 method is able to assign larger energy differences between the native structure and the decoys in a set, arguably because of a better description of dispersion interactions, however PM6-DH+ was slightly better than the rest at selecting geometrically good models in the absence of a native structure in the set. © 2016 Wiley Periodicals, Inc.


Assuntos
Proteínas/química , Teoria Quântica , Termodinâmica , Conformação Proteica , Soluções
20.
PLoS One ; 11(5): e0154500, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27223475

RESUMO

The RM1 quantum chemical model for the calculation of complexes of Tm(III), Yb(III) and Lu(III) is advanced. Subsequently, we tested the models by fully optimizing the geometries of 126 complexes. We then compared the optimized structures with known crystallographic ones from the Cambridge Structural Database. Results indicate that, for thulium complexes, the accuracy in terms of the distances between the lanthanide ion and its directly coordinated atoms is about 2%. Corresponding results for ytterbium and lutetium are both 3%, levels of accuracy useful for the design of lanthanide complexes, targeting their countless applications.


Assuntos
Lutécio/química , Modelos Químicos , Túlio/química , Itérbio/química , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...