Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(12): e0244021, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362265

RESUMO

Random regression models (RRM) are a powerful tool to evaluate genotypic plasticity over time. However, to date, RRM remains unexplored for the analysis of repeated measures in Jatropha curcas breeding. Thus, the present work aimed to apply the random regression technique and study its possibilities for the analysis of repeated measures in Jatropha curcas breeding. To this end, the grain yield (GY) trait of 730 individuals of 73 half-sib families was evaluated over six years. Variance components were estimated by restricted maximum likelihood, genetic values were predicted by best linear unbiased prediction and RRM were fitted through Legendre polynomials. The best RRM was selected by Bayesian information criterion. According to the likelihood ratio test, there was genetic variability among the Jatropha curcas progenies; also, the plot and permanent environmental effects were statistically significant. The variance components and heritability estimates increased over time. Non-uniform trajectories were estimated for each progeny throughout the measures, and the area under the trajectories distinguished the progenies with higher performance. High accuracies were found for GY in all harvests, which indicates the high reliability of the results. Moderate to strong genetic correlation was observed across pairs of harvests. The genetic trajectories indicated the existence of genotype × measurement interaction, once the trajectories crossed, which implies a different ranking in each year. Our results suggest that RRM can be efficiently applied for genetic selection in Jatropha curcas breeding programs.


Assuntos
Jatropha/genética , Modelos Genéticos , Melhoramento Vegetal , Variação Biológica da População , Variação Genética
2.
PLoS One ; 15(12): e0233200, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33264283

RESUMO

The evaluation of cultivars using multi-environment trials (MET) is an important step in plant breeding programs. One of the objectives of these evaluations is to understand the genotype by environment interaction (GEI). A method of determining the effect of GEI on the performance of cultivars is based on studies of adaptability and stability. Initial studies were based on linear regression; however, these methodologies have limitations, mainly in trials with genetic or statistical unbalanced, heterogeneity of residual variances, and genetic covariance. An alternative would be the use of random regression models (RRM), in which the behavior of the genotypes is characterized as a reaction norm using longitudinal data or repeated measurements and information regarding a covariance function. The objective of this work was the application of RRM in the study of the behavior of common bean cultivars using a MET, based on Legendre polynomials and genotype-ideotype distances. We used a set of 13 trials, which were classified as unfavorable or favorable environments. The results revealed that RRM enables the prediction of the genotypic values of cultivars in environments where they were not evaluated with high accuracy values, thereby circumventing the unbalanced of the experiments. From these values, it was possible to measure the genotypic adaptability according to ideotypes, according to their reaction norms. In addition, the stability of the cultivars can be interpreted as variation in the behavior of the ideotype. The use of ideotypes based on real data allowed a better comparison of the performance of cultivars across environments. The use of RRM in plant breeding is a good alternative to understand the behavior of cultivars in a MET, especially when we want to quantify the adaptability and stability of genotypes.


Assuntos
Adaptação Fisiológica/genética , Interação Gene-Ambiente , Modelos Genéticos , Melhoramento Vegetal/métodos , Plantas/genética , Algoritmos , Altitude , Brasil , Instabilidade Genômica , Genótipo , Funções Verossimilhança , Phaseolus/genética , Phaseolus/fisiologia , Probabilidade , Distribuição Aleatória , Análise de Regressão , Estações do Ano
3.
BMC Plant Biol ; 19(1): 548, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31822283

RESUMO

BACKGROUND: Elephant grass [Cenchrus purpureus (Schumach.) Morrone] is used for bioenergy and animal feed. In order to identify candidate genes that could be exploited for marker-assisted selection in elephant grass, this study aimed to investigate changes in predictive accuracy using genomic relationship information and simple sequence repeats for eight traits (height, green biomass, dry biomass, acid and neutral detergent fiber, lignin content, biomass digestibility, and dry matter concentration) linked to bioenergetics and animal feeding. RESULTS: We used single-step, genome-based best linear unbiased prediction and genome association methods to investigate changes in predictive accuracy and find candidate genes using genomic relationship information. Genetic variability (p < 0.05) was detected for most of the traits evaluated. In general, the overall means for the traits varied widely over the cuttings, which was corroborated by a significant genotype by cutting interaction. Knowing the genomic relationships increased the predictive accuracy of the biomass quality traits. We found that one marker (M28_161) was significantly associated with high values of biomass digestibility. The marker had moderate linkage disequilibrium with another marker (M35_202) that, in general, was detected in genotypes with low values of biomass digestibility. In silico analysis revealed that both markers have orthologous regions in other C4 grasses such as Setaria viridis, Panicum hallii, and Panicum virgatum, and these regions are located close to candidate genes involved in the biosynthesis of cell wall molecules (xyloglucan and lignin), which support their association with biomass digestibility. CONCLUSIONS: The markers and candidate genes identified here are useful for breeding programs aimed at changing biomass digestibility in elephant grass. These markers can be used in marker-assisted selection to grow elephant grass cultivars for different uses, e.g., bioenergy production, bio-based products, co-products, bioactive compounds, and animal feed.


Assuntos
Bovinos/fisiologia , Cenchrus/química , Cenchrus/genética , Digestão , Genes de Plantas , Fenômenos Fisiológicos da Nutrição Animal , Animais , Biomassa , Metabolismo Energético
4.
PLoS One ; 13(9): e0203818, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30212554

RESUMO

Persistence may be defined as high sustained yield over multi-harvest. Genetic insights about persistence are essential to ensure the success of breeding programs and any biomass-based project. This paper focuses on assessing the biomass yield persistence for bioenergy purpose of 100 elephantgrass clones measured in six growth seasons in Brazil. To assess the clones' persistence, an index based on random regression models and genotype-ideotype distance was proposed. Results suggested the existence of wide genetic variability between elephantgrass clones, and that the yield trajectories along the harvests generate genetic insights into elephantgrass clones' persistence and G x E interaction. A gene pool that acts over the biomass yield (regardless of the harvest) was detected, as well as other gene pools, which show differences on genes expression (these genes are the major responsible for clones' persistence). The lower and higher clones' persistence was discussed based on genome dosage effect and natural biological nitrogen fixation ability applied to bioenergy industry. The huge potential of energy crops necessarily is associated with genetic insights into persistence, so just this way, breeding programs could breed a new cultivar that fulfills the bioenergy industries.


Assuntos
Biocombustíveis , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/genética , Melhoramento Vegetal , Poaceae/crescimento & desenvolvimento , Poaceae/genética , Biomassa , Brasil , Interação Gene-Ambiente , Variação Genética , Genoma de Planta , Nitrogênio/metabolismo , Característica Quantitativa Herdável , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...