Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chaos ; 32(5): 053107, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35649986

RESUMO

When confined to a Hele-Shaw cell, chemical gardens can grow as filaments, narrow structures with an erratic and tortuous trajectory. In this work, the methodology applied to studies with horizontal Hele-Shaw cells is adapted to a vertical configuration, thus introducing the effect of buoyancy into the system. The motion of a single filament tip is modeled by taking into account its internal pressure and the variation of the concentration of precipitate that constitutes the chemical garden membrane. While the model shows good agreement with the results, it also suggests that the concentration of the host solution of sodium silicate also plays a role in the growth of the structures despite being in stoichiometric excess.

2.
Langmuir ; 38(21): 6700-6710, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35593590

RESUMO

We describe and study the formation of confined chemical garden patterns. At low flow rates of injection of cobalt chloride solution into a Hele-Shaw cell filled with sodium silicate, the precipitate forms with a thin filament wrapping around an expanding "candy floss" structure. The result is the formation of an Archimedean spiral structure. We model the growth of the structure mathematically. We estimate the effective density of the precipitate and calculate the membrane permeability. We set the results within the context of recent experimental and modeling work on confined chemical garden filaments.

3.
Phys Chem Chem Phys ; 23(9): 5222-5235, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33629080

RESUMO

Filaments in a planar chemical garden grow following tortuous, erratic paths. We show from statistical mechanics that this scaling results from a self-organized dispersion mechanism. Effective diffusivities as high as 10-5 m2 s-1 are measured in 2D laboratory experiments. This efficient transport is four orders of magnitude larger than molecular diffusion in a liquid, and ensures widespread contact and exchange between fluids in the chemical-garden structure and its surrounding environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...