Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosensors (Basel) ; 13(6)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37367011

RESUMO

A rapid and simple method for the amperometric determination of glucose using a nanocomposite film of nickel oxyhydroxide and multi-walled carbon nanotube (MWCNTs) was evaluated. The NiHCF)/MWCNT electrode film was fabricated using the liquid-liquid interface method, and it was used as a precursor for the electrochemical synthesis of nickel oxy-hydroxy (Ni(OH)2/NiOOH/MWCNT). The interaction between nickel oxy-hydroxy and the MWCNTs provided a film that is stable over the electrode surface, with high surface area and excellent conductivity. The nanocomposite presented an excellent electrocatalytic activity for the oxidation of glucose in an alkaline medium. The sensitivity of the sensor was found to be 0.0561 µA µmol L-1, and a linear range from 0.1 to 150 µmol L-1 was obtained, with a good limit of detection (0.030 µmol L-1). The electrode exhibits a fast response (150 injections h-1) and a sensitive catalytic performance, which may be due to the high conductivity of MWCNT and the increased active surface area of the electrode. Additionally, a minimal difference in the slopes for ascending (0.0561 µA µmol L-1) and descending (0.0531 µA µmol L-1) was observed. Moreover, the sensor was applied to the detection of glucose in artificial plasma blood samples, achieving values of 89 to 98% of recovery.


Assuntos
Nanotubos de Carbono , Níquel , Glucose , Oxirredução , Eletrodos , Impressão Tridimensional , Técnicas Eletroquímicas/métodos
2.
J Agric Food Chem ; 71(6): 3060-3067, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36720110

RESUMO

Sulfanilamide (SFL) is used to prevent infections in honeybees. However, many regulatory agencies prohibit or establish maximum levels of SFL residues in honey samples. Hence, we developed a low-cost and portable electrochemical method for SFL detection using a disposable device produced through 3D printing technology. In the proposed approach, the working electrode was printed using a conductive filament based on carbon black and polylactic acid and it was associated with square wave voltammetry (SWV). Under optimized SWV parameters, linear concentration ranges (1-10 µmol L-1 and 12.5-35.0 µmol L-1), a detection limit of 0.26 µmol L-1 (0.05 mg L-1), and suitable RSD values (2.4% for inter-electrode; n = 3) were achieved. The developed method was selective in relation to other antibiotics applied in honey samples, requiring only dilution in the electrolyte. The recovery values (85-120%) obtained by SWV were statistically similar (95% confidence level) to those obtained by HPLC, attesting to the accuracy of the analysis and the absence of matrix interference.


Assuntos
Mel , Fuligem , Animais , Fuligem/química , Sulfanilamida , Eletroquímica , Eletrodos , Técnicas Eletroquímicas , Carbono/química
3.
Biosensors (Basel) ; 12(9)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36140146

RESUMO

Silver materials are known to present excellent properties, such as high electrical and thermal conductivity as well as chemical stability. Silver-based inks have drawn a lot of attention for being compatible with various substrates, which can be used in the production uniform and stable pseudo-reference electrodes with low curing temperatures. Furthermore, the interest in the use of disposable electrodes has been increasing due to the low cost and the possibility of their use in point-of-care and point-of-need situations. Thus, in this work, two new inks were developed using Ag as conductive material and colorless polymers (nail polish (NP) and shellac (SL)), and applied to different substrates (screen-printed electrodes, acetate sheets, and 3D-printed electrodes) to verify the performance of the proposed inks. Measurements attained with open circuit potential (OCP) attested to the stability of the potential of the pseudo-reference proposed for 1 h. Analytical curves for ß-estradiol were also obtained using the devices prepared with the proposed inks as pseudo-references electrodes, which presented satisfactory results concerning the potential stability (RSD < 2.6%). These inks are simple to prepare and present great alternatives for the development of pseudo-reference electrodes useful in the construction of disposable electrochemical systems.


Assuntos
Tinta , Prata , Eletrodos , Estradiol , Polímeros/química , Prata/química
4.
Talanta ; 250: 123727, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35850056

RESUMO

Although studies have demonstrated the inactivity of hydroxychloroquine (HCQ) towards SARS-CoV-2, this compound was one of the most prescribed by medical organizations for the treatment of hospitalized patients during the coronavirus pandemic. As a result of it, HCQ has been considered as a potential emerging contaminant in aquatic environments. In this context, we propose a complete electrochemical device comprising cell and working electrode fabricated by the additive manufacture (3D-printing) technology for HCQ monitoring. For this, a 3D-printed working electrode made of a conductive PLA containing carbon black assembled in a 3D-printed cell was associated with square wave voltammetry (SWV) for the fast and sensitive determination of HCQ. After a simple surface activation procedure, the proposed 3D-printed sensor showed a linear response towards HCQ detection (0.4-7.5 µmol L-1) with a limit of detection of 0.04 µmol L-1 and precision of 2.4% (n = 10). The applicability of this device was shown to the analysis of pharmaceutical and water samples. Recovery values between 99 and 112% were achieved for tap water samples and, in addition, the obtained concentration values for pharmaceutical tablets agreed with the values obtained by spectrophotometry (UV region) at a 95% confidence level. The proposed device combined with portable instrumentation is promising for on-site HCQ detection.


Assuntos
Tratamento Farmacológico da COVID-19 , Hidroxicloroquina , Eletrodos , Humanos , Hidroxicloroquina/análise , Poliésteres , SARS-CoV-2 , Fuligem , Comprimidos/química , Água
5.
Mikrochim Acta ; 189(5): 188, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35404013

RESUMO

A laser-induced graphene (LIG) surface modified with Prussian blue (iron hexacyanoferrate) is demonstrated as a novel electrochemical sensing platform for the sensitive and selective detection of hydrogen peroxide. Electrochemical Prussian blue (PB) modification on porous graphene films engraved by infrared laser over flexible polyimide was accomplished. Scanning electron microscopy images combined with Raman spectra confirm the formation of porous graphene and homogenous electrodeposition of PB over this porous surface. Electrochemical impedance spectroscopy reveals a substantial decrease in the resistance to charge transfer values (from 395 to 31.4 Ω) after the PB insertion, which confirms the formation of a highly conductive PB-graphene composite. The synergistic properties of PB and porous graphene were investigated for the constant monitoring of hydrogen peroxide at 0.0 V vs. Ag|AgCl|KCl(sat.), under high-flow injections (166 µL s-1) confirming the high stability of the modified surface and fast response within a wide linear range (from 1 to 200 µmol L-1). Satisfactory detection limit (0.26 µmol L-1) and selectivity verified by the analysis of complex samples confirmed the excellent sensing performance of this platform. We highlight that the outstanding sensing characteristics of the developed sensor were superior in comparison with other PB-based or LIG-based electrochemical sensors reported for hydrogen peroxide detection.


Assuntos
Grafite , Técnicas Eletroquímicas/métodos , Eletrodos , Ferrocianetos , Grafite/química , Peróxido de Hidrogênio/análise , Lasers
6.
Mikrochim Acta ; 189(5): 185, 2022 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-35396635

RESUMO

Graphene-based materials present unique properties for electrochemical applications, and laser-induced conversion of polyimide to graphene is an emerging route to obtain a high-quality material for sensing. Herein we present compact and low-cost equipment constructed from an open-source 3D printer at which a 3.5-W visible (449 nm) laser was adapted to fabricate laser-induced graphene (LIG) electrodes from commercial polyimide, which resulted in electron transfer kinetic (k0) of 5.6 × 10-3 cm s-1 and reproducibility calculated by relative standard deviation (RSD < 5%) from cyclic voltammograms of [Fe(CN)6]3-/4- using 5 different electrodes. LIG electrodes enabled the simultaneous voltammetric determination of uric acid (+ 0.1 V vs. pseudo-reference) and nitrite (+ 0.4 V vs pseudo-reference), with limit of detection (LOD) values of 0.07 and 0.27 µmol L-1, respectively. Amperometric measurements for the detection of H2O2 (applying + 0.0 V vs. Ag|AgCl|KCl(sat.)) after Prussian blue (PB) modification and ciprofloxacin (applying + 1.2 V vs. Ag|AgCl|KCl(sat.)) were performed under flow conditions, which confirmed the high stability of LIG and LIG-PB surfaces. The LOD values were 1.0 and 0.2 µmol L-1 for H2O2 and ciprofloxacin, respectively. The RSD values (< 12%) obtained for the analysis using three different electrodes attested the precision of LIG electrodes manufactured in two designs. No sample matrix effects on the determination of ciprofloxacin in milk samples were observed  (recoveries between 84 and 96%). The equipment can be built with less than $300 and each LIG electrode costs less than $0.01.


Assuntos
Grafite , Ciprofloxacina , Eletrodos , Grafite/química , Peróxido de Hidrogênio , Lasers , Reprodutibilidade dos Testes
8.
Talanta ; 233: 122597, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34215085

RESUMO

1-(3-chlorophenyl) piperazine (mCPP) is a synthetic drug with hallucinogenic effects that has often been found in seized samples. In this context, easy to use point-of-care tests can be of great value in preliminary forensic analysis. Herein, we proposed a simple, fast, and portable electrochemical method for the detection of mCPP in seized samples. The method is based on the use of disposable screen-printed carbon electrodes (SPCE) and rapid screening procedures by square-wave voltammetry using minimal sample sizes (100 µL). mCPP showed an irreversible electrochemical oxidation process at +0.65 V on SPCE (vs Ag) using 0.04 mol L-1 Britton Robinson (BR) buffer solution (pH 7) as the supporting electrolyte. The proposed method exhibited a linear correlation (r = 0.998) between peak current and mCPP concentration in the range of 1-30 µmol L-1 (LOD = 0.1 µmol L-1). Interference studies were performed for adulterants and other classes of drugs of abuse, which can also be found in seized samples containing mCPP, such as caffeine, amphetamine, methamphetamine, 1-benzylpiperazine, 3,4-methylenedioxymethamphetamine, methylone, mephedrone, ethylone and 3, 4-methylenedioxypyrovalerone. The developed method presents great potential as a rapid and simple screening tool to detect mCPP in forensic samples.


Assuntos
N-Metil-3,4-Metilenodioxianfetamina , Anfetaminas , Eletrodos , Piperazinas
9.
Anal Methods ; 13(15): 1788-1794, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33885677

RESUMO

Cocaine is probably one of the most trafficked illicit drugs in the world. For this reason, police forces require fast, selective, and sensitive methods for cocaine detection at crime scenes. Taking benefit of additive manufacturing, we demonstrate that 3D-printed graphene-polylactic acid (G-PLA) electrodes using the affordable fused deposition modelling technique can identify and quantify cocaine in seized drugs. The detection of cocaine based on its electrochemical oxidation on such electrodes was dramatically improved after an electrochemical surface treatment that generates reduced graphene oxide (anodic followed by a cathodic treatment). Square-wave voltammetric determination of cocaine was achieved in the concentration range between 20 and 100 µmol L-1, with a detection limit of 6 µmol L-1, and free from the interference of paracetamol, caffeine, phenacetin, lidocaine, benzocaine and levamisole, which are common adulterants found in seized drugs. The analytical characteristics obtained using 3D-printed G-PLA electrodes were comparable with those of previously reported electrochemical sensors, but presented the inherent advantages of the 3D-printing technology that enables low-cost, reproducible, and large-scale production of such electrodes in remote areas combined with the use of an environmentally-friendly biopolymer.

10.
Anal Chim Acta ; 1132: 1-9, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-32980098

RESUMO

Three-dimensional printing techniques have been widely used in the fabrication of new materials applied to energy, sensing and electronics due to unique advantages, such as fast prototyping, reduced waste generation, and multiple fabrication designs. In this paper, the production of a conductive 3D-printing filament composed of Ni(OH)2 microparticles and graphene within a polylactic acid matrix (Ni-G-PLA) is reported. The nanocomposite was characterized by thermogravimetric, energy-dispersive X-ray spectroscopic, scanning electronic microscopic, Raman spectroscopic and electrochemical techniques. Characteristics such as printability (using fused deposition modelling), electrical conductivity and mechanical stability of the polymer nanocomposite were evaluated before and after 3D printing. The novel 3D-printed disposable electrode was applied for selective detection of glucose (enzyme-less sensor) with a detection limit of 2.4 µmol L-1, free from the interference of ascorbic acid, urea and uric acid, compounds typically found in biological samples. The sensor was assembled in a portable electrochemical system that enables fast (160 injection h-1), precise (RSD < 5%) and selective determination of glucose without the need of enzymes (electrocatalytic properties of the Ni-G-PLA nanocomposite). The obtained results showed that Ni-G-PLA is a promising material for the production of disposable sensors for selective detection of glucose using a simple and low-cost 3D-printer.


Assuntos
Técnicas Eletroquímicas , Glucose , Níquel , Condutividade Elétrica , Impressão Tridimensional
11.
Anal Chim Acta ; 1132: 10-19, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-32980099

RESUMO

The fabrication of carbon black/polylactic acid (PLA) electrodes using a 3D printing pen is presented and compared with electrodes obtained by a desktop fused deposition modelling (FDM) 3D printer. The 3D pen was used for the fast production of electrodes in two designs using customized 3D printed parts to act as template and guide the reproducible application of the 3D pen: (i) a single working electrode at the bottom of a 3D-printed cylindrical body and (ii) a three-electrode system on a 3D-printed planar substrate. Both devices were electrochemically characterized using the redox probe [Fe(CN)6]3-/4- via cyclic voltammetry, which presented similar performance to an FDM 3D-printed electrode or a commercial screen-printed carbon electrode (SPE) regarding peak-to-peak separation (ΔEp) and current density. The surface treatment of the carbon black/PLA electrodes fabricated by both 3D pen and FDM 3D-printing procedures provided substantial improvement of the electrochemical activity by removing excess of PLA, which was confirmed by scanning electron microscopic images for electrodes fabricated by both procedures. Structural defects were not inserted after the electrochemical treatment as shown by Raman spectra (iD/iG), which indicates that the use of 3D pen can replace desktop 3D printers for electrode fabrication. Inter-electrode precision for the best device fabricated using the 3D pen (three-electrode system) was 4% (n = 5) considering current density and anodic peak potential for the redox probe. This device was applied for the detection of 2,4,6-trinitrotoluene (TNT) via square-wave voltammetry of a single-drop of 100 µL placed upon the thee-electrode system, resulting in three reduction peaks commonly verified for TNT on carbon electrodes. Limit of detection of 1.5 µmol L-1, linear range from 5 to 500 µmol L-1 and RSD lower than 4% for 10 repetitive measurements of 100 µmol L-1 TNT were obtained. The proposed devices can be reused after polishing on sandpaper generating new electrode surfaces, which is an extra advantage over chemically-modified electrochemical sensors applied for TNT detection.

12.
Talanta ; 219: 121289, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32887031

RESUMO

This communication shows the electrochemical synthesis of Prussian blue (PB) films on additive manufactured (3D-printed) electrodes from iron impurities found at the graphene-polylactic acid (G/PLA) substrate and its application as a highly selective sensor for H2O2. The 3D-printed G/PLA electrode was immersed in dimethylformamide for 30 min to exposure the iron impurities within the PLA matrix. Next, cyclic voltammograms (200 cycles) in the presence of potassium ferricyanide in 0.1 mol L-1 KCl + 0.01 mol L-1 HCl were performed to grow the PB films. The sensing properties of this novel PB/G/PLA platform were evaluated for the amperometric detection of H2O2 using batch-injection analysis, with a limit of detection of 0.56 µmol L-1 under the application of 0.0 V (vs Ag/AgCl/KClsat.). The applicability of the sensor was demonstrated for the analysis of milk samples (10-fold diluted in the supporting electrolyte), resulting in proper recovery values (94-101%).


Assuntos
Grafite , Peróxido de Hidrogênio , Eletrodos , Ferrocianetos , Ferro , Impressão Tridimensional
13.
Anal Chim Acta ; 1130: 126-136, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32892932

RESUMO

3D-printing is an emerging technique that enables the fast prototyping of multiple-use devices. Herein we report the fabrication of a 3D-printed graphene/polylactic acid (G-PLA) conductive electrode that works as a sampler and a voltammetric sensor of metals in gunshot residue (GSR) using a commercially-available G/-PLA filament. The 3D-printed surface was used as swab to collect GSR and next submitted to a square-wave voltammetric scan for the simultaneous detection of Pb2+ and Sb3+. The proposed sensor presented excellent analytical performance, with limit of detection values of 0.5 and 1.8 µg L-1 to Pb2+ and Sb3+, respectively, and linear ranges between 50 and 1500 µg L-1. Sampling was performed through the direct contact of G-PLA electrode in hands and clothes of shooters, followed by immersion in the electrochemical cell in the presence of supporting electrolyte for the SWASV scan. The proposed method showed a great performance in the recovery, identification and semi-quantification of Pb2+ and Sb3+ in the evaluated samples without the need for sample preparation. Moreover, the device can be reused as sampler and sensor (until three times without loss of electrochemical performance) and the fabrication is reproducible (RSD = 7%, for three different devices). Hence, this 3D-printed material is an excellent candidate for the analysis of GSR, an indispensable analysis in the forensic field.


Assuntos
Antimônio , Grafite , Eletrodos , Chumbo , Impressão Tridimensional
14.
Anal Chim Acta ; 1118: 73-91, 2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32418606

RESUMO

Additive manufacturing or three-dimensional (3D)-printing is an emerging technology that has been applied in the development of novel materials and devices for a wide range of applications, including Electrochemistry and Analytical Chemistry areas. This review article focuses on the contributions of 3D-printing technology to the development of electrochemical sensors and complete electrochemical sensing devices. Due to the recent contributions of 3D-printing within this scenario, the aim of this review is to present a guide for new users of 3D-printing technology considering the required features for improved electrochemical sensing using 3D-printed sensors. At the same time, this is a comprehensive review that includes most 3D-printed electrochemical sensors and devices already reported using selective laser melting (SLM) and fused deposition modeling (FDM) 3D-printers. The latter is the most affordable 3D-printing technique and for this reason has been more often applied for the fabrication of electrochemical sensors, also due to commercially-available conductive and non-conductive filaments. Special attention is given to critically discuss the need for the surface treatment of FDM 3D-printed platforms to improve their electrochemical performance. The insertion of biochemical and chemical catalysts on the 3D-printed surfaces are highlighted as well as novel strategies to fabricate filaments containing chemical modifiers within the polymeric matrix. Some examples of complete electrochemical sensing systems obtained by 3D-printing have successfully demonstrated the enormous potential to develop portable devices for on-site applications. The freedom of design enabled by 3D-printing opens many possibilities of forthcoming investigations in the area of analytical electrochemistry.

15.
Talanta ; 207: 120319, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31594613

RESUMO

Midazolam (MID) is a sedative drug which can be added in beverage samples as drug-facilitated-sexual assault (date rape drug). This type of drug has short half-life in biological fluids (not detectable) which often prevents the correlation between drug abuse and crime. In this work, we described a simple and low-cost method for fast screening and selective determination of MID in beverage samples (vodka, whiskey and red wine). For the first time, the electrochemical oxidation of MID was used for this purpose. The oxidation mechanism was studied using electrochemical techniques (cyclic and square-wave voltammetry) and computational simulations (density functional theory calculations). Differential-pulse voltammetry, boron-doped diamond electrode (BDDE), and Britton-Robinson (BR) buffer (pH = 2) were selected as electrochemical analysis technique, working electrode and supporting electrolyte, respectively. Different linear response ranges (4-25 µmol L-1 with r = 0.9972; 1-10 µmol L-1 with r = 0.9951; 1-15 µmol L-1 with r = 0.9982) and limits of detection (0.46, 0.43 and 0.33 µmol L-1) were obtained for the analysis of vodka, whisky, and red wine solutions, respectively. The precision and accuracy were satisfactory considering the low relative standard deviation values (RSD < 6.3%, n = 15) and minimal sample matrix effects (recovery values between 87 and 103%).

16.
Anal Chim Acta ; 1034: 1-21, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30193622

RESUMO

This current review article focuses on recent contributions to on-site forensic investigations. Portable and potentially portable methods are presented and critically discussed about (bio)chemical trace analysis and studies performed outside the controlled laboratory environment to rapidly help in crime scene inquiries or forensic intelligence purposes. A wide range of approaches including electrochemical sensors, microchip electrophoresis, ambient ionization on portable mass spectrometers, handheld Raman and NIR instruments as well as and point-of-need devices, like paper-based platforms, for in-field analysis of latent evidences, controlled substances, drug screening, hazards, and others to assist in law enforcements and solving crime more efficiently are highlighted. The covered examples have successfully demonstrated the huge potential of portable devices for on-site applications. Future investigations should consider analytical validation to compete equality and even replace current gold standard methods.


Assuntos
Técnicas Eletroquímicas , Eletroforese em Microchip , Ciências Forenses/instrumentação , Drogas Ilícitas/análise , Papel
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...