Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Cell Physiol ; 234(2): 1398-1415, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30078202

RESUMO

The mechanisms of cancer involve changes in multiple biological pathways. Multitarget molecules, which are components of animal venoms, are therefore a potential strategy for treating tumors. The objective of this study was to screen the effects of Phoneutria nigriventer spider venom (PnV) on tumor cell lines. Cultured human glioma (NG97), glioblastoma (U-251) and cervix adenocarcinoma (HeLa) cells, and nontumor mouse fibroblasts (L929) were treated with low (14 µg/ml) and high (280 µg/ml) concentrations of PnV, and analyzed through assays for cell viability (thiazolyl blue tetrazolium blue), proliferation (carboxyfluorescein succinimidyl ester), death (annexin V/propidium iodide [Pi]), the cell cycle (Pi), and migration (wound healing and transwell assay). The venom decreased the viability of U-251 cells, primarily by inducing cell death, and reduced the viability of NG97 cells, primarily by inhibiting the cell cycle. The migration of all the tumor cell lines was delayed when treated with venom. The venom significantly affected all the tumor cell lines studied, with no cytotoxic effect on normal cells (L929), although the nonglial tumor cell (HeLa) was less sensitive to PnV. The results of the current study suggest that PnV may be composed of peptides that are highly specific for the multiple targets involved in the hallmarks of cancer. Experiments are underway to identify these molecules.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Glioma/tratamento farmacológico , Venenos de Aranha/farmacologia , Neoplasias do Colo do Útero/tratamento farmacológico , Adenocarcinoma/patologia , Animais , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/patologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Glioma/patologia , Células HeLa , Humanos , Masculino , Camundongos , Necrose , Invasividade Neoplásica , Neoplasias do Colo do Útero/patologia
2.
J Cell Physiol, v. 234, n. 2, p. 1398-1415, fev. 2019
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2616

RESUMO

The mechanisms of cancer involve changes in multiple biological pathways. Multitarget molecules, which are components of animal venoms, are therefore a potential strategy for treating tumors. The objective of this study was to screen the effects of Phoneutria nigriventer spider venom (PnV) on tumor cell lines. Cultured human glioma (NG97), glioblastoma (U-251) and cervix adenocarcinoma (HeLa) cells, and nontumor mouse fibroblasts (L929) were treated with low (14?µg/ml) and high (280?µg/ml) concentrations of PnV, and analyzed through assays for cell viability (thiazolyl blue tetrazolium blue), proliferation (carboxyfluorescein succinimidyl ester), death (annexin V/propidium iodide [Pi]), the cell cycle (Pi), and migration (wound healing and transwell assay). The venom decreased the viability of U-251 cells, primarily by inducing cell death, and reduced the viability of NG97 cells, primarily by inhibiting the cell cycle. The migration of all the tumor cell lines was delayed when treated with venom. The venom significantly affected all the tumor cell lines studied, with no cytotoxic effect on normal cells (L929), although the nonglial tumor cell (HeLa) was less sensitive to PnV. The results of the current study suggest that PnV may be composed of peptides that are highly specific for the multiple targets involved in the hallmarks of cancer. Experiments are underway to identify these molecules.

3.
J. Cell. Physiol. ; 234(2): p. 1398-1415, 2019.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15702

RESUMO

The mechanisms of cancer involve changes in multiple biological pathways. Multitarget molecules, which are components of animal venoms, are therefore a potential strategy for treating tumors. The objective of this study was to screen the effects of Phoneutria nigriventer spider venom (PnV) on tumor cell lines. Cultured human glioma (NG97), glioblastoma (U-251) and cervix adenocarcinoma (HeLa) cells, and nontumor mouse fibroblasts (L929) were treated with low (14?µg/ml) and high (280?µg/ml) concentrations of PnV, and analyzed through assays for cell viability (thiazolyl blue tetrazolium blue), proliferation (carboxyfluorescein succinimidyl ester), death (annexin V/propidium iodide [Pi]), the cell cycle (Pi), and migration (wound healing and transwell assay). The venom decreased the viability of U-251 cells, primarily by inducing cell death, and reduced the viability of NG97 cells, primarily by inhibiting the cell cycle. The migration of all the tumor cell lines was delayed when treated with venom. The venom significantly affected all the tumor cell lines studied, with no cytotoxic effect on normal cells (L929), although the nonglial tumor cell (HeLa) was less sensitive to PnV. The results of the current study suggest that PnV may be composed of peptides that are highly specific for the multiple targets involved in the hallmarks of cancer. Experiments are underway to identify these molecules.

4.
Adv Pharm Bull, v. 8, n. 3, p. 517-522, 2018
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2565

RESUMO

Purpose: Rhinella schneideri is a toad found in many regions of the South America. The poison of the glands has cardiotoxic effect in animals and neuromuscular effects in mice and avian preparation. The purpose of this work was to identify the toxin responsible for the neuromuscular effect in avian and mice neuromuscular preparation. Methods: The methanolic extract from R. schneideri poison was fractioned by reversed phase HPLC. The purity and molecular mass were determined by LC/MS mass spectrometry. Chick biventer cervicis and mouse phrenic-nerve diaphragm were used as neuromuscular preparations to identify the toxin. Results: The purification resulted in 32 fractions, which 4 of them were active in neuromuscular preparation. The toxin of fraction 20 were chosen for better reproducibility of the whole extract activity and its molecular mass was 730.6 Da. The toxin produced facilitation of the muscle contraction followed by a complete neuromuscular blockade in chick biventer cervicis preparation in 90 min without interfering with the exogenous response to ACh and KCl. The quantal content was increased from 128 ± 13 (control) to 216 ± 44 (after 5 min and sustained until 60 min) in the presence of the toxin. Conclusion: In conclusion, our results demonstrated that the neuromuscular action of the poison of Rhinella schneideri is a multitoxin effect. More, the present work first isolated a 730.6 Da toxin that better represent the whole poison neuromuscular effect, to which is attributed a presynaptic action in avian and mouse neuromuscular preparation.

5.
Adv Pharm Bull ; 8(3): p. 517-522, 2018.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15589

RESUMO

Purpose: Rhinella schneideri is a toad found in many regions of the South America. The poison of the glands has cardiotoxic effect in animals and neuromuscular effects in mice and avian preparation. The purpose of this work was to identify the toxin responsible for the neuromuscular effect in avian and mice neuromuscular preparation. Methods: The methanolic extract from R. schneideri poison was fractioned by reversed phase HPLC. The purity and molecular mass were determined by LC/MS mass spectrometry. Chick biventer cervicis and mouse phrenic-nerve diaphragm were used as neuromuscular preparations to identify the toxin. Results: The purification resulted in 32 fractions, which 4 of them were active in neuromuscular preparation. The toxin of fraction 20 were chosen for better reproducibility of the whole extract activity and its molecular mass was 730.6 Da. The toxin produced facilitation of the muscle contraction followed by a complete neuromuscular blockade in chick biventer cervicis preparation in 90 min without interfering with the exogenous response to ACh and KCl. The quantal content was increased from 128 ± 13 (control) to 216 ± 44 (after 5 min and sustained until 60 min) in the presence of the toxin. Conclusion: In conclusion, our results demonstrated that the neuromuscular action of the poison of Rhinella schneideri is a multitoxin effect. More, the present work first isolated a 730.6 Da toxin that better represent the whole poison neuromuscular effect, to which is attributed a presynaptic action in avian and mouse neuromuscular preparation.

6.
Biochem Biophys Rep ; 4: 324-328, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29124220

RESUMO

BACKGROUND: Currently there is an urgent need to develop new classes of antimicrobial agents with different mechanisms of action from conventionally antibiotics used for the control of pathogenic microorganisms. The acylpolyamine called VdTX-I was isolated from the venom of the tarantula Vitalius dubius, and first described with activity as an antagonist of nicotinic cholinergic receptors. The main objective of this study was to investigate the antimicrobial activity found in the venom of the spider, with emphasis on the toxin VdTX-I. METHODS: Antimicrobial assays were performed in 96 well plates culture against 14 micro-organisms (fungi, yeasts and bacteria), which were tested concentrations from 0.19 to 100 µM of VdTX-I. After qualitative analysis, dose-response curve assays were performed in bacterial kill curve using MTT reagent and hemolytic assay. RESULTS: The antimicrobial activity of the VdTX-I toxin was observed in 12 tested species of Candida, Trichosporiun, Staphylococcus and Micrococcus. The toxicity had a dose-response at 3.12 µM - 100 µM in Candida albicans, Candida guillermondii, Micrococcus luteus and Escherichia coli. VdTX-I took about 5 min to inhibit bacterial growth, which was faster than streptomycin. The toxin showed no hemolytic activity between 0.19 and 100 µM. At 2.5 µg/mL of toxin it was observed no growth inhibition against a mammalian cell lineage. CONCLUSIONS: The VdTX-I toxin has a significant antimicrobial activity, with broad spectrum, and is experimentally inert to mammalian blood cells. GENERAL SIGNIFICANCE: This paper explores the antimicrobial potential of the spider toxin VdTX-I, which can provide a new model to design new antimicrobial drugs.

7.
J Venom Anim Toxins Incl Trop Dis ; 20(1): 2, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24495716

RESUMO

BACKGROUND: Venom hyaluronidase (Hyase) contributes to the diffusion of venom from the inoculation site. In this work, we purified and characterized Hyase from the venom of Vitalius dubius (Araneae, Theraphosidae), a large theraphosid found in southeastern Brazil. Venom obtained by electrical stimulation of adult male and female V. dubius was initially fractionated by gel filtration on a Superdex® 75 column. Active fractions were pooled and applied to a heparin-sepharose affinity column. The proteins were eluted with a linear NaCl gradient. RESULTS: Active fractions were pooled and assessed for purity by SDS-PAGE and RP-HPLC. The physicochemical tests included optimum pH, heat stability, presence of isoforms, neutralization by flavonoids and assessment of commercial antivenoms. Hyase was purified and presented a specific activity of 148 turbidity-reducing units (TRU)/mg (venom: 36 TRU/mg; purification factor of ~4). Hyase displayed a molecular mass of 43 kDa by SDS-PAGE. Zymography in hyaluronic-acid-containing gels indicated an absence of enzyme isoforms. The optimum pH was 4-5, with highest activity at 37°C. Hyase was stable up to 60°C; but its activity was lost at higher temperatures and maintained after several freeze-thaw cycles. The NaCl concentration (up to 1 M) did not influence activity. Hyase had greater action towards hyaluronic acid compared to chondroitin sulfate, and was completely neutralized by polyvalent antiarachnid sera, but not by caterpillar, scorpion or snakes antivenoms. CONCLUSION: The neutralization by arachnid but not scorpion antivenom indicates that this enzyme shares antigenic epitopes with similar enzymes in other spider venoms. The biochemical properties of this Hyase are comparable to others described.

8.
J. venom. anim. toxins incl. trop. dis ; 20: 1-7, 04/02/2014. graf
Artigo em Inglês | LILACS | ID: lil-702582

RESUMO

Background: Venom hyaluronidase (Hyase) contributes to the diffusion of venom from the inoculation site. In this work, we purified and characterized Hyase from the venom of Vitalius dubius (Araneae, Theraphosidae), a large theraphosid found in southeastern Brazil. Venom obtained by electrical stimulation of adult male and female V. dubius was initially fractionated by gel filtration on a Superdex® 75 column. Active fractions were pooled and applied to a heparin-sepharose affinity column. The proteins were eluted with a linear NaCl gradient. Results: Active fractions were pooled and assessed for purity by SDS-PAGE and RP-HPLC. The physicochemical tests included optimum pH, heat stability, presence of isoforms, neutralization by flavonoids and assessment of commercial antivenoms. Hyase was purified and presented a specific activity of 148 turbidity-reducing units (TRU)/mg (venom: 36 TRU/mg; purification factor of ~4). Hyase displayed a molecular mass of 43 kDa by SDS-PAGE. Zymography in hyaluronic-acid-containing gels indicated an absence of enzyme isoforms. The optimum pH was 4-5, with highest activity at 37°C. Hyase was stable up to 60°C; but its activity was lost at higher temperatures and maintained after several freeze-thaw cycles. The NaCl concentration (up to 1 M) did not influence activity. Hyase had greater action towards hyaluronic acid compared to chondroitin sulfate, and was completely neutralized by polyvalent antiarachnid sera, but not by caterpillar, scorpion or snakes antivenoms. Conclusion: The neutralization by arachnid but not scorpion antivenom indicates that this enzyme shares antigenic epitopes with similar enzymes in other spider venoms. The biochemical properties of this Hyase are comparable to others described.


Assuntos
Animais , Masculino , Feminino , Picada de Aranha , Venenos de Aranha
9.
Muscle Nerve ; 47(4): 591-3, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23460475

RESUMO

INTRODUCTION: Crotamine is a basic, low-molecular-weight peptide that, at low concentrations, improves neurotransmission in isolated neuromuscular preparations by modulating sodium channels. In this study, we compared the effects of crotamine and neostigmine on neuromuscular transmission in myasthenic rats. METHODS: We used a conventional electromyographic technique in in-situ neuromuscular preparations and a 4-week treadmill program. RESULTS: During the in-situ electromyographic recording, neostigmine (17 µg/kg) caused short-term facilitation, whereas crotamine induced progressive and sustained twitch-tension enhancement during 140 min of recording (50 ± 5%, P < 0.05). On the treadmill evaluation, rats showed significant improvement in exercise tolerance, characterized by a decrease in the number of fatigue episodes after 2 weeks of a single-dose treatment with crotamine. CONCLUSIONS: These results indicate that crotamine is more efficient than neostigmine for enhancing muscular performance in myasthenic rats, possibly by improving the safety factor of neuromuscular transmission.


Assuntos
Inibidores da Colinesterase/uso terapêutico , Venenos de Crotalídeos/uso terapêutico , Miastenia Gravis Autoimune Experimental/tratamento farmacológico , Neostigmina/uso terapêutico , Animais , Avaliação Pré-Clínica de Medicamentos , Eletromiografia , Tolerância ao Exercício/efeitos dos fármacos , Membro Posterior , Masculino , Músculo Esquelético/efeitos dos fármacos , Junção Neuromuscular/efeitos dos fármacos , Ratos , Ratos Endogâmicos Lew , Transmissão Sináptica/efeitos dos fármacos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...