Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(18): e202314143, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38179812

RESUMO

Drug safety and efficacy due to premature release into the bloodstream and poor biodistribution remains a problem despite seminal advances in this area. To circumvent these limitations, we report drug cyclization based on dynamic covalent linkages to devise a dual lock for the small-molecule anticancer drug, camptothecin (CPT). Drug activity is "locked" within the cyclic structure by the redox responsive disulfide and pH-responsive boronic acid-salicylhydroxamate and turns on only in the presence of acidic pH, reactive oxygen species and glutathione through traceless release. Notably, the dual-responsive CPT is more active (100-fold) than the non-cleavable (permanently closed) analogue. We further include a bioorthogonal handle in the backbone for functionalization to generate cyclic-locked, cell-targeting peptide- and protein-CPTs, for targeted delivery of the drug and traceless release in triple negative metastatic breast cancer cells to inhibit cell growth at low nanomolar concentrations.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Camptotecina/química , Distribuição Tecidual , Antineoplásicos/química , Micelas , Proteínas , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Liberação Controlada de Fármacos , Linhagem Celular Tumoral
2.
Chem Sci ; 14(47): 13743-13754, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38075666

RESUMO

Reversible cysteine modification has been found to be a useful tool for a plethora of applications such as selective enzymatic inhibition, activity-based protein profiling and/or cargo release from a protein or a material. However, only a limited number of reagents display reliable dynamic/reversible thiol modification and, in most cases, many of these reagents suffer from issues of stability, a lack of modularity and/or poor rate tunability. In this work, we demonstrate the potential of pyridazinediones as novel reversible and tuneable covalent cysteine modifiers. We show that the electrophilicity of pyridazinediones correlates to the rates of the Michael addition and retro-Michael deconjugation reactions, demonstrating that pyridazinediones provide an enticing platform for readily tuneable and reversible thiol addition/release. We explore the regioselectivity of the novel reaction and unveil the reason for the fundamental increased reactivity of aryl bearing pyridazinediones by using DFT calculations and corroborating findings with SCXRD. We also applied this fundamental discovery to making more rapid disulfide rebridging agents in related work. We finally provide the groundwork for potential applications in various areas with exemplification using readily functionalised "clickable" pyridazinediones on clinically relevant cysteine and disulfide conjugated proteins, as well as on a hydrogel material.

3.
Bioconjug Chem ; 34(12): 2215-2220, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-37962868

RESUMO

Bispecific antibodies as T cell engagers designed to display binding capabilities to both tumor-associated antigens and antigens on T cells are considered promising agents in the fight against cancer. Even though chemical strategies to develop such constructs have emerged, a method that readily converts a therapeutically applied antibody into a bispecific construct by a fully non-genetic process is not yet available. Herein, we report the application of a biogenic, tyrosine-based click reaction utilizing chemoenzymatic modifications of native IgG1 antibodies to generate a synthetic bispecific antibody construct that exhibits tumor-killing capability at picomolar concentrations. Control experiments revealed that a covalent linkage of the different components is required for the observed biological activities. In view of the highly potent nature of the constructs and the modular approach that relies on convenient synthetic methods utilizing therapeutically approved biomolecules, our method expedites the production of potent bispecific antibody constructs with tunable cell killing efficacy with significant impact on therapeutic properties.


Assuntos
Anticorpos Biespecíficos , Neoplasias , Humanos , Linfócitos T , Química Click , Neoplasias/tratamento farmacológico , Anticorpos Biespecíficos/química , Antígenos de Neoplasias/metabolismo
4.
Biomacromolecules ; 24(11): 4646-4652, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37792488

RESUMO

Thiol-reactive Michael acceptors are commonly used for the formation of chemically cross-linked hydrogels. In this paper, we address the drawbacks of many Michael acceptors by introducing pyridazinediones as new cross-linking agents. Through the use of pyridazinediones and their mono- or dibrominated analogues, we show that the mechanical strength, swelling ratio, and rate of gelation can all be controlled in a pH-sensitive manner. Moreover, we demonstrate that the degradation of pyridazinedione-gels can be induced by the addition of thiols, thus providing a route to responsive or dynamic gels, and that monobromo-pyridazinedione gels are able to support the proliferation of human cells. We anticipate that our results will provide a valuable and complementary addition to the existing toolkit of cross-linking agents, allowing researchers to tune and rationally design the properties of biomedical hydrogels.


Assuntos
Hidrogéis , Compostos de Sulfidrila , Humanos , Hidrogéis/química , Compostos de Sulfidrila/química , Reagentes de Ligações Cruzadas/química
5.
Chem Sci ; 14(14): 3752-3762, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37035695

RESUMO

Either as full IgGs or as fragments (Fabs, Fc, etc.), antibodies have received tremendous attention in the development of new therapeutics such as antibody-drug conjugates (ADCs). The production of ADCs involves the grafting of active payloads onto an antibody, which is generally enabled by the site-selective modification of native or engineered antibodies via chemical or enzymatic methods. Whatever method is employed, controlling the payload-antibody ratio (PAR) is a challenge in terms of multiple aspects including: (i) obtaining homogeneous protein conjugates; (ii) obtaining unusual PARs (PAR is rarely other than 2, 4 or 8); (iii) using a single method to access a range of different PARs; (iv) applicability to various antibody formats; and (v) flexibility for the production of heterofunctional antibody-conjugates (e.g. attachment of multiple types of payloads). In this article, we report a single pyridazinedione-based trifunctional dual bridging linker that enables, in a two-step procedure (re-bridging/click), the generation of either mAb-, Fab'-, or Fc-conjugates from native mAb, (Fab')2 or Fc formats, respectively. Fc and (Fab')2 formats were generated via enzymatic digestion of native mAbs. Whilst the same reduction and re-bridging protocols were applied to all three of the protein formats, the subsequent click reaction(s) employed to graft payload(s) drove the generation of a range of PARs, including heterofunctional PARs. As such, exploiting click reactivity and/or orthogonality afforded mAb-conjugates with PARs of 6, 4, 2 or 4 + 2, and Fab'- and Fc-conjugates with a PAR of 3, 2, 1 or 2 + 1 on-demand. We believe that the homogeneity, novelty and variety in accessible PARs, as well as the applicability to various antibody-conjugate formats enabled by our non-recombinant method could be a suitable tool for antibody-drug conjugates optimisation (optimal PAR value, optimal payloads combination) and boost the development of new antibody therapeutics (Fab'- and Fc-conjugates).

6.
Adv Mater ; : e2300413, 2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36905683

RESUMO

Semiconducting polymer nanoparticles (SPNs) are explored for applications in cancer theranostics because of their high absorption coefficients, photostability, and biocompatibility. However, SPNs are susceptible to aggregation and protein fouling in physiological conditions, which can be detrimental for in vivo applications. Here, a method for achieving colloidally stable and low-fouling SPNs is described by grafting poly(ethylene glycol) (PEG) onto the backbone of the fluorescent semiconducting polymer, poly(9,9'-dioctylfluorene-5-fluoro-2,1,3-benzothiadiazole), in a simple one-step substitution reaction, postpolymerization. Further, by utilizing azide-functionalized PEG, anti-human epidermal growth factor receptor 2 (HER2) antibodies, antibody fragments, or affibodies are site-specifically "clicked" onto the SPN surface, which allows the functionalized SPNs to specifically target HER2-positive cancer cells. In vivo, the PEGylated SPNs are found to have excellent circulation efficiencies in zebrafish embryos for up to seven days postinjection. SPNs functionalized with affibodies are then shown to be able to target HER2 expressing cancer cells in a zebrafish xenograft model. The covalent PEGylated SPN system described herein shows great potential for cancer theranostics.

7.
ACS Cent Sci ; 9(3): 476-487, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36968530

RESUMO

In recent years there has been rising interest in the field of protein-protein conjugation, especially related to bispecific antibodies (bsAbs) and their therapeutic applications. These constructs contain two paratopes capable of binding two distinct epitopes on target molecules and are thus able to perform complex biological functions (mechanisms of action) not available to monospecific mAbs. Traditionally these bsAbs have been constructed through protein engineering, but recently chemical methods for their construction have started to (re)emerge. While these have been shown to offer increased modularity, speed, and for some methods even the inherent capacity for further functionalization (e.g., with small molecule cargo), most of these approaches lacked the ability to include a fragment crystallizable (Fc) modality. The Fc component of IgG antibodies offers effector function and increased half-life. Here we report a first-in-class disulfide rebridging and click-chemistry-based method for the generation of Fc-containing, IgG-like mono- and bispecific antibodies. These are in the FcZ-(FabX)-FabY format, i.e., two distinct Fabs and an Fc, potentially all from different antibodies, attached in a homogeneous and covalent manner. We have dubbed these molecules synthetic antibodies (SynAbs). We have constructed a T cell-engager (TCE) SynAb, FcCD20-(FabHER2)-FabCD3, and have confirmed that it exhibits the expected biological functions, including the ability to kill HER2+ target cells in a coculture assay with T cells.

8.
Chem Commun (Camb) ; 58(5): 645-648, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-34747956

RESUMO

Herein we report a thiol-labile cysteine protecting group based on an unsaturated pyridazinedione (PD) scaffold. We establish compatibility of the PD in conventional solid phase peptide synthesis (SPPS), showcasing this in the on-resin synthesis of biologically relevant oxytocin. Furthermore, we establish the applicability of the PD protecting group towards both microwave-assisted SPPS and native chemical ligation (NCL) in a model system.


Assuntos
Técnicas de Síntese em Fase Sólida
9.
Methods Enzymol ; 644: 121-148, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32943142

RESUMO

Chemically modified proteins are increasingly being tested and approved as therapeutic products. Batch-to-batch homogeneity is crucial to ensure safety and quality of therapeutic products. Highly selective protein modification may be achieved using enzymatic routes. Microbial transglutaminase (mTG) is a robust, easy to use and well-established enzyme that is used at a very large scale in the food industry such that its efficacy and its safety for human consumption are well established. In the context of therapeutic protein modification, mTG should crosslink one or more glutamines on the target protein with an aminated moiety such as a solubilizer, a tracer or a cytotoxic moiety. mTG has the advantage of being unreactive toward the majority of surface-exposed glutamines on most proteins, reducing sample heterogeneity. The caveat is that there may be no reactive glutamine on the target protein, or else a reactive glutamine may be found in a location where its modification compromises function of the target protein. Here we describe the glutamine-walk (Gln-walk), a straightforward method to create a glutamine-substrate site that is reactive to mTG in a target protein. Iterative substitution of single amino acids to a glutamine is followed by facile identification of reactivity with mTG, where covalent labeling of the target with an aminated fluorophore allows visualization of the most reactive modified targets. The approach is empirical; knowledge of the target protein structure and functional regions facilitates application of the method.


Assuntos
Glutamina , Transglutaminases , Humanos , Proteínas , Especificidade por Substrato , Transglutaminases/metabolismo , Caminhada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...