Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 11(10)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34680093

RESUMO

The role of genetics in the development of osteoarthritis is well established but the molecular bases are not fully understood. Here, we describe a family carrying a germline mutation in COMP (Cartilage Oligomeric Matrix Protein) associated with three distinct phenotypes. The index case was enrolled for a familial form of idiopathic early-onset osteoarthritis. By screening potential causal genes for osteoarthritis, we identified a heterozygous missense mutation of COMP (c.1358C>T, p.Asn453Ser), absent from genome databases, located on a highly conserved residue and predicted to be deleterious. Molecular dynamics simulation suggests that the mutation destabilizes the overall COMP protein structure and consequently the calcium releases from neighboring calcium binding sites. This mutation was once reported in the literature as causal for severe multiple epiphyseal dysplasia (MED). However, no sign of dysplasia was present in the index case. The mutation was also identified in one of her brothers diagnosed with MED and secondary osteoarthritis, and in her sister affected by an atypical syndrome including peripheral inflammatory arthritis of unknown cause, without osteoarthritis nor dysplasia. This article suggests that this mutation of COMP is not only causal for idiopathic early-onset osteoarthritis or severe MED, but can also be associated to a broad phenotypic variability with always joint alterations.


Assuntos
Proteína de Matriz Oligomérica de Cartilagem/genética , Predisposição Genética para Doença , Osteoartrite/genética , Osteocondrodisplasias/genética , Adulto , Feminino , Variação Genética/genética , Mutação em Linhagem Germinativa/genética , Humanos , Articulações/patologia , Masculino , Pessoa de Meia-Idade , Simulação de Dinâmica Molecular , Mutação de Sentido Incorreto/genética , Osteoartrite/patologia , Osteocondrodisplasias/patologia , Conformação Proteica , Relação Estrutura-Atividade
2.
Sci Rep ; 10(1): 19577, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177650

RESUMO

Histone methyltransferase EZH2 is upregulated during osteoarthritis (OA), which is the most widespread rheumatic disease worldwide, and a leading cause of disability. This study aimed to assess the impact of EZH2 inhibition on cartilage degradation, inflammation and functional disability. In vitro, gain and loss of EZH2 function were performed in human articular OA chondrocytes stimulated with IL-1ß. In vivo, the effects of EZH2 inhibition were investigated on medial meniscectomy (MMX) OA mouse model. The tissue alterations were assayed by histology and the functional disabilities of the mice by actimetry and running wheel. In vitro, EZH2 overexpression exacerbated the action of IL-1ß in chondrocytes increasing the expression of genes involved in inflammation, pain (NO, PGE2, IL6, NGF) and catabolism (MMPs), whereas EZH2 inhibition by a pharmacological inhibitor, EPZ-6438, reduced IL-1ß effects. Ex vivo, EZH2 inhibition decreased IL-1ß-induced degradation of cartilage. In vivo, intra-articular injections of the EZH2 inhibitor reduced cartilage degradation and improved motor functions of OA mice. This study demonstrates that the pharmacological inhibition of the histone methyl-transferase EZH2 slows the progression of osteoarthritis and improves motor functions in an experimental OA model, suggesting that EZH2 could be an effective target for the treatment of OA by reducing catabolism, inflammation and pain.


Assuntos
Cartilagem Articular/patologia , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Osteoartrite/patologia , Idoso , Idoso de 80 Anos ou mais , Animais , Benzamidas/farmacologia , Compostos de Bifenilo/farmacologia , Cartilagem Articular/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Condrócitos/fisiologia , Modelos Animais de Doenças , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Regulação da Expressão Gênica , Humanos , Interleucina-1beta/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Morfolinas/farmacologia , Fator de Crescimento Neural/metabolismo , Técnicas de Cultura de Órgãos , Piridonas/farmacologia
3.
Lab Invest ; 100(1): 64-71, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31409892

RESUMO

Osteoarthritis (OA) is characterized by cartilage degradation, inflammation, and hypertrophy. Therapies are mainly symptomatic and aim to manage pain. Consequently, medical community is waiting for new treatments able to reduce OA process. This study aims to develop an in vitro simple OA model useful to predict drug ability to reduce cartilage hypertrophy. Human primary OA chondrocytes were incubated with transforming growth factor beta 1 (TGF-ß1). Hypertrophy was evaluated by Runx2, type X collagen, MMP13, and VEGF expression. Cartilage anabolism was investigated by Sox9, aggrecan, type II collagen, and glycosaminoglycan expression. In chondrocytes, TGF-ß1 increased expression of hypertrophic genes and activated canonical WNT pathway, while it decreased dramatically cartilage anabolism, suggesting that this treatment could mimic some OA features in vitro. Additionally, EZH2 inhibition, that has been previously reported to decrease cartilage hypertrophy and reduce OA development in vivo, attenuated COL10A1 and MMP13 upregulation and SOX9 downregulation induced by TGF-ß1 treatment. Similarly, pterosin B (an inhibitor of Sik3), and DMOG (a hypoxia-inducible factor prolyl hydroxylase which mimicks hypoxia), repressed the expression of hypertrophy markers in TGF-ß stimulated chondrocytes. In conclusion, we established an innovative OA model in vitro. This cheap and simple model will be useful to quickly screen new drugs with potential anti-arthritic effects, in complementary to current inflammatory models, and should permit to accelerate development of efficient treatments against OA able to reduce cartilage hypertrophy.


Assuntos
Cartilagem Articular/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Modelos Biológicos , Osteoartrite/tratamento farmacológico , Idoso , Idoso de 80 Anos ou mais , Aminoácidos Dicarboxílicos , Benzamidas , Compostos de Bifenilo , Avaliação Pré-Clínica de Medicamentos , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Humanos , Hipertrofia/tratamento farmacológico , Indanos , Pessoa de Meia-Idade , Morfolinas , Cultura Primária de Células , Piridonas , Fator de Crescimento Transformador beta1 , Via de Sinalização Wnt
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...