Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lab Chip ; 24(12): 3169-3182, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38804084

RESUMO

Despite recent advances in cancer treatment, refining therapeutic agents remains a critical task for oncologists. Precise evaluation of drug effectiveness necessitates the use of 3D cell culture instead of traditional 2D monolayers. Microfluidic platforms have enabled high-throughput drug screening with 3D models, but current viability assays for 3D cancer spheroids have limitations in reliability and cytotoxicity. This study introduces a deep learning model for non-destructive, label-free viability estimation based on phase-contrast images, providing a cost-effective, high-throughput solution for continuous spheroid monitoring in microfluidics. Microfluidic technology facilitated the creation of a high-throughput cancer spheroid platform with approximately 12 000 spheroids per chip for drug screening. Validation involved tests with eight conventional chemotherapeutic drugs, revealing a strong correlation between viability assessed via LIVE/DEAD staining and phase-contrast morphology. Extending the model's application to novel compounds and cell lines not in the training dataset yielded promising results, implying the potential for a universal viability estimation model. Experiments with an alternative microscopy setup supported the model's transferability across different laboratories. Using this method, we also tracked the dynamic changes in spheroid viability during the course of drug administration. In summary, this research integrates a robust platform with high-throughput microfluidic cancer spheroid assays and deep learning-based viability estimation, with broad applicability to various cell lines, compounds, and research settings.


Assuntos
Sobrevivência Celular , Aprendizado Profundo , Esferoides Celulares , Humanos , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/patologia , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais/instrumentação , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Técnicas Analíticas Microfluídicas/instrumentação , Dispositivos Lab-On-A-Chip
2.
Commun Biol ; 6(1): 1301, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129519

RESUMO

Considerable evidence suggests that breast cancer therapeutic resistance and relapse can be driven by polyploid giant cancer cells (PGCCs). The number of PGCCs increases with the stages of disease and therapeutic stress. Given the importance of PGCCs, it remains challenging to eradicate them. To discover effective anti-PGCC compounds, there is an unmet need to rapidly distinguish compounds that kill non-PGCCs, PGCCs, or both. Here, we establish a single-cell morphological analysis pipeline with a high throughput and great precision to characterize dynamics of individual cells. In this manner, we screen a library to identify promising compounds that inhibit all cancer cells or only PGCCs (e.g., regulators of HDAC, proteasome, and ferroptosis). Additionally, we perform scRNA-Seq to reveal altered cell cycle, metabolism, and ferroptosis sensitivity in breast PGCCs. The combination of single-cell morphological and molecular investigation reveals promising anti-PGCC strategies for breast cancer treatment and other malignancies.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Recidiva Local de Neoplasia , Poliploidia , Perfilação da Expressão Gênica
3.
Lab Chip ; 23(21): 4619-4635, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37750357

RESUMO

Cell migration is a complex process that plays a crucial role in normal physiology and pathologies such as cancer, autoimmune diseases, and mental disorders. Conventional cell migration assays face limitations in tracking a large number of individual migrating cells. To address this challenge, we have developed a high-throughput microfluidic cell migration chip, which seamlessly integrates robotic liquid handling and computer vision to swiftly monitor the movement of 3200 individual cells, providing unparalleled single-cell resolution for discerning distinct behaviors of the fast-moving cell population. This study focuses on the ECM's role in regulating cellular migration, utilizing this cutting-edge microfluidic technology to investigate the impact of ten different ECMs on triple-negative breast cancer cell lines. We found that collagen IV, collagen III, and collagen I coatings were the top enhancers of cell movement. Combining these ECMs increased cell motility, but the effect was sub-additive. Furthermore, we examined 87 compounds and found that while some compounds inhibited migration on all substrates, significantly distinct effects on differently coated substrates were observed, underscoring the importance of considering ECM coating. We also utilized cells expressing a fluorescent actin reporter and observed distinct actin structures in ECM-interacting cells. ScRNA-Seq analysis revealed that ECM coatings induced EMT and enhanced cell migration. Finally, we identified genes that were particularly up-regulated by collagen IV and the selective inhibitors successfully blocked cell migration on collagen IV. Overall, the study provides insights into the impact of various ECMs on cell migration and dynamics of cell movement with implications for developing therapeutic strategies to combat diseases related to cell motility.


Assuntos
Actinas , Microfluídica , Humanos , Actinas/análise , Matriz Extracelular/química , Movimento Celular/fisiologia , Colágeno/metabolismo
4.
Small ; 19(6): e2206754, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36449634

RESUMO

Cancer cell migration represents an essential step toward metastasis and cancer deaths. However, conventional drug discovery focuses on cytotoxic and growth-inhibiting compounds rather than inhibitors of migration. Drug screening assays generally measure the average response of many cells, masking distinct cell populations that drive metastasis and resist treatments. Here, this work presents a high-throughput microfluidic cell migration platform that coordinates robotic liquid handling and computer vision for rapidly quantifying individual cellular motility. Using this innovative technology, 172 compounds were tested and a surprisingly low correlation between migration and growth inhibition was found. Notably, many compounds were found to inhibit migration of most cells while leaving fast-moving subpopulations unaffected. This work further pinpoints synergistic drug combinations, including Bortezomib and Danirixin, to stop fast-moving cells. To explain the observed cell behaviors, single-cell morphological and molecular analysis were performed. These studies establish a novel technology to identify promising migration inhibitors for cancer treatment and relevant applications.


Assuntos
Descoberta de Drogas , Microfluídica , Movimento Celular , Linhagem Celular Tumoral , Análise de Célula Única , Ensaios de Triagem em Larga Escala
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...