Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 28(24): 35898-35909, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33379696

RESUMO

It is challenging to obtain nanoscale resolution images in a single ultrafast shot because a large number of photons, greater than 1011, are required in a single pulse of the illuminating source. We demonstrate single-shot high resolution Fourier transform holography over a broad 7 µm diameter field of view with ∼ 5 ps temporal resolution. The experiment used a plasma-based soft X-ray laser operating at 18.9 nm wavelength with nearly full spatial coherence and close to diffraction-limited divergence implemented utilizing a dual-plasma amplifier scheme. A Fresnel zone plate with a central aperture is used to efficiently generate the object and reference beams. Rapid numerical reconstruction by a 2D Fourier transform allows for real-time imaging. A half-pitch spatial resolution of 62 nm was obtained. This single-shot nanoscale-resolution imaging technique will allow for real-time ultrafast imaging of dynamic phenomena in compact setups.

2.
Nat Commun ; 9(1): 1077, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29540753

RESUMO

Nuclear fusion is regularly created in spherical plasma compressions driven by multi-kilojoule pulses from the world's largest lasers. Here we demonstrate a dense fusion environment created by irradiating arrays of deuterated nanostructures with joule-level pulses from a compact ultrafast laser. The irradiation of ordered deuterated polyethylene nanowires arrays with femtosecond pulses of relativistic intensity creates ultra-high energy density plasmas in which deuterons (D) are accelerated up to MeV energies, efficiently driving D-D fusion reactions and ultrafast neutron bursts. We measure up to 2 × 106 fusion neutrons per joule, an increase of about 500 times with respect to flat solid targets, a record yield for joule-level lasers. Moreover, in accordance with simulation predictions, we observe a rapid increase in neutron yield with laser pulse energy. The results will impact nuclear science and high energy density research and can lead to bright ultrafast quasi-monoenergetic neutron point sources for imaging and materials studies.

3.
Opt Lett ; 42(19): 3828-3831, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28957138

RESUMO

We demonstrate the generation of 0.85 PW, 30 fs laser pulses at a repetition rate of 3.3 Hz with a record average power of 85 W from a Ti:sapphire laser. The system is pumped by high-energy Nd:glass slab amplifiers frequency doubled in LiB3O5 (LBO). Ultrahigh-contrast λ=400 nm femtosecond pulses were generated in KH2PO4 (KDP) with >40% efficiency. An intensity of 6.5×1021 W/cm2 was obtained by frequency doubling 80% of the available Ti:sapphire energy and focusing the doubled light with an f/2 parabola. This laser will enable highly relativistic plasma experiments to be conducted at high repetition rate.

4.
Sci Adv ; 3(1): e1601558, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28097218

RESUMO

Ultrahigh-energy density (UHED) matter, characterized by energy densities >1 × 108 J cm-3 and pressures greater than a gigabar, is encountered in the center of stars and inertial confinement fusion capsules driven by the world's largest lasers. Similar conditions can be obtained with compact, ultrahigh contrast, femtosecond lasers focused to relativistic intensities onto targets composed of aligned nanowire arrays. We report the measurement of the key physical process in determining the energy density deposited in high-aspect-ratio nanowire array plasmas: the energy penetration. By monitoring the x-ray emission from buried Co tracer segments in Ni nanowire arrays irradiated at an intensity of 4 × 1019 W cm-2, we demonstrate energy penetration depths of several micrometers, leading to UHED plasmas of that size. Relativistic three-dimensional particle-in-cell simulations, validated by these measurements, predict that irradiation of nanostructures at intensities of >1 × 1022 W cm-2 will lead to a virtually unexplored extreme UHED plasma regime characterized by energy densities in excess of 8 × 1010 J cm-3, equivalent to a pressure of 0.35 Tbar.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...