Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 95(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38980129

RESUMO

The diamond anvil cell (DAC) has been widely used in high-pressure research. Despite significant progress over the past five decades, the opposed anvil geometry in the DAC inevitably leads to a disk-shaped sample configuration at high pressure. This intrinsic limitation is largely responsible for the large pressure and temperature gradients in the DAC, which often compromise precise experiments and their characterizations. We designed and fabricated a multi-axis diamond anvil cell (MDAC) by adopting the concept of a multi-anvil apparatus but using single crystal diamonds as the anvil material. Preliminary data show that the MDAC can generate extreme pressure conditions above 100 GPa. The advantages of the MDAC over a traditional opposed anvil DAC include thicker, voluminous samples, quasi-hydrostatic, or designed deviatoric stress conditions, and multidirectional access windows for optical applications and x-ray probes. In this article, we present the design and performance of a prototype MDAC, as well as the application prospects in high-pressure research.

2.
Rev Sci Instrum ; 93(8): 083901, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050120

RESUMO

We present a portable CO2 laser heating system for in situ x-ray absorption spectroscopy (XAS) studies at 16-BM-D (High Pressure Collaborative Access Team, Advanced Photon Source, Argonne National Laboratory). Back scattering optical measurements are made possible by the implementation of a Ge beamsplitter. Optical pyrometry is conducted in the near-infrared, and our temperature measurements are free of chromatic aberration due to the implementation of the peak-scaling method [A. Kavner and W. R. Panero, Phys. Earth Planet. Inter. 143-144, 527-539 (2004) and A. Kavner and C. Nugent, Rev. Sci. Instrum. 79, 024902 (2008)] and mode scrambling of the input signal. Laser power stabilization is established using electronic feedback, providing a steady power over second timescales [Childs et al., Rev. Sci. Instrum. 91, 103003 (2020)]-crucial for longer XAS collections. Examples of in situ high pressure-temperature extended x-ray absorption fine structure measurements of ZrO2 are presented to demonstrate this new capability.

3.
Phys Chem Miner ; 49(9): 36, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992384

RESUMO

High-Pressure Collaborative Access Team (HPCAT) is a synchrotron-based facility located at the Advanced Photon Source (APS). With four online experimental stations and various offline capabilities, HPCAT is focused on providing synchrotron x-ray capabilities for high pressure and temperature research and supporting a broad user community. Overall, the array of online/offline capabilities is described, including some of the recent developments for remote user support and the concomitant impact of the current pandemic. General overview of work done at HPCAT and with a focus on some of the minerals relevant work and supporting capabilities is also discussed. With the impending APS-Upgrade (APS-U), there is a considerable effort within HPCAT to improve and add capabilities. These are summarized briefly for each of the end-stations.

4.
Rev Sci Instrum ; 90(1): 015116, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30709214

RESUMO

The hardware and software used to execute fly scans at Sector 16 of the Advanced Photon Source are described. The system design and capabilities address dimensions and time scales relevant to samples in high pressure diamond anvil cells. The time required for routine sample positioning and centering is significantly reduced, and more importantly, the time savings associated with fly scanning make it feasible for users to routinely generate two-dimensional x-ray transmission and x-ray diffraction maps. Consequently, this facilitates an important shift in high pressure research as experimentalists embrace the study of heterogeneous and minute sample volumes in the diamond anvil cell.

5.
Sex Transm Infect ; 95(2): 145-150, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30636705

RESUMO

OBJECTIVES: To describe the factors that influence gay, bisexual and other men who have sex with men's (gbMSM) experiences with GetCheckedOnline.com (GCO) in British Columbia (BC), Canada. GCO clients complete an internet-based risk assessment and print a laboratory test requisition form for HIV and other STIs to take to a private laboratory for diagnostic services. METHODS: Drawing on a purposive stratified sampling framework, we conducted 37 in-depth semistructured interviews with gbMSM who had used GCO at least once between 2015 and 2017. RESULTS: Participants expressed a preference for GCO (instead of clinic-based testing) because of convenience, privacy and control over specimen collection (specifically with doing one's own throat or anal swab). Participants preferred receiving their results online via GCO compared with phone or email follow-up by clinic staff. GCO was viewed positively because it offers gbMSM living outside of urban city centres easy access to diagnostic services, including access to pooled nucleic acid amplification testing. Many participants also continued to positively view the clinic-based services available for gbMSM in their community. These services were frequently described as highly competent, tailored and comprehensive in responding to more complex needs. For example, attending a clinic was viewed as preferential to GCO in instances where there was a desire to access services addressing co-occurring health issues (eg, mental health; substance use disorders). Almost all of the participants anticipated using both GCO and clinic-based services in the future. CONCLUSIONS: gbMSM report positive experiences and perceptions of GCO; however, they do not view GCO as a panacea. The results of this study point to the need to ensure that a wide range of integrated service options (eg, online; clinic-based) are available to address the range of sexual health needs of gbMSM living in BC's diverse settings.


Assuntos
Serviços de Diagnóstico/estatística & dados numéricos , Infecções por HIV/diagnóstico , Homossexualidade Masculina/psicologia , Internet , Minorias Sexuais e de Gênero/psicologia , Infecções Sexualmente Transmissíveis/diagnóstico , Adulto , Idoso , Colúmbia Britânica , Atenção à Saúde , Testes Diagnósticos de Rotina/estatística & dados numéricos , HIV/genética , Humanos , Masculino , Pessoa de Meia-Idade , Preferência do Paciente , Pesquisa Qualitativa , Medição de Risco , Comportamento Sexual , Parceiros Sexuais , Adulto Jovem
6.
Rev Sci Instrum ; 89(8): 083901, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30184683

RESUMO

We present a CO2 laser heating setup for synchrotron x-ray diffraction inside a diamond anvil cell, situated at HPCAT (Sector 16, Advanced Photon Source, Argonne National Lab, Illinois, USA), which is modular and portable between the HPCAT experiment hutches. The system allows direct laser heating of wide bandgap insulating materials to thousands of degrees at static high pressures up to the Mbar regime. Alignment of the focused CO2 laser spot is performed using a mid-infrared microscope, which addressed past difficulties with aligning the invisible radiation. The implementation of the mid-infrared microscope alongside a mirror pinhole spatial filter system allows precise alignment of the heating laser spot and optical pyrometry measurement location to the x-ray probe. A comparatively large heating spot (∼50 µm) relative to the x-ray beam (<10 µm) reduces the risk of temperature gradients across the probed area. Each component of the heating system and its diagnostics have been designed with portability in mind and compatibility with the various experimental hutches at the HPCAT beamlines. We present measurements on ZrO2 at 5.5 GPa which demonstrate the improved room-temperature diffraction data quality afforded by annealing with the CO2 laser. We also present in situ measurements at 5.5 GPa up to 2800 K in which we do not observe the postulated fluorite ZrO2 structure, in agreement with recent findings.

8.
Rev Sci Instrum ; 86(7): 072201, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26233341

RESUMO

An overview of the in situ laser heating system at the High Pressure Collaborative Access Team, with emphasis on newly developed capabilities, is presented. Since its establishment at the beamline 16-ID-B a decade ago, laser-heated diamond anvil cell coupled with in situ synchrotron x-ray diffraction has been widely used for studying the structural properties of materials under simultaneous high pressure and high temperature conditions. Recent developments in both continuous-wave and modulated heating techniques have been focusing on resolving technical issues of the most challenging research areas. The new capabilities have demonstrated clear benefits and provide new opportunities in research areas including high-pressure melting, pressure-temperature-volume equations of state, chemical reaction, and time resolved studies.

9.
Rev Sci Instrum ; 86(7): 072202, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26233342

RESUMO

We have designed and constructed a new system for micro-machining parts and sample assemblies used for diamond anvil cells and general user operations at the High Pressure Collaborative Access Team, sector 16 of the Advanced Photon Source. The new micro-machining system uses a pulsed laser of 400 ps pulse duration, ablating various materials without thermal melting, thus leaving a clean edge. With optics designed for a tight focus, the system can machine holes any size larger than 3 µm in diameter. Unlike a standard electrical discharge machining drill, the new laser system allows micro-machining of non-conductive materials such as: amorphous boron and silicon carbide gaskets, diamond, oxides, and other materials including organic materials such as polyimide films (i.e., Kapton). An important feature of the new system is the use of gas-tight or gas-flow environmental chambers which allow the laser micro-machining to be done in a controlled (e.g., inert gas) atmosphere to prevent oxidation and other chemical reactions in air sensitive materials. The gas-tight workpiece enclosure is also useful for machining materials with known health risks (e.g., beryllium). Specialized control software with a graphical interface enables micro-machining of custom 2D and 3D shapes. The laser-machining system was designed in a Class 1 laser enclosure, i.e., it includes laser safety interlocks and computer controls and allows for routine operation. Though initially designed mainly for machining of the diamond anvil cell gaskets, the laser-machining system has since found many other micro-machining applications, several of which are presented here.

10.
Rev Sci Instrum ; 86(7): 072205, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26233345

RESUMO

The monochromator and focusing mirrors of the 16-BM-D beamline, which is dedicated to high-pressure research with micro-X-ray diffraction (micro-XRD) and X-ray absorption near edge structure (XANES) (6-45 keV) spectroscopy, have been recently upgraded. Monochromatic X-rays are selected by a Si (111) double-crystal monochromator operated in an artificial channel-cut mode and focused to 5 µm × 5 µm (FWHM) by table-top Kirkpatrick-Baez type mirrors located near the sample stage. The typical X-ray flux is ∼5 × 10(8) photons/s at 30 keV. The instrumental resolution, Δq/qmax, reaches to 2 × 10(-3) and is tunable through adjustments of the detector distance and X-ray energy. The setup is stable and reproducible, which allows versatile application to various types of experiments including resistive heating and cryogenic cooling as well as ambient temperature compression. Transmission XANES is readily combined with micro-XRD utilizing the fixed-exit feature of the monochromator, which allows combined XRD-XANES measurements at a given sample condition.

11.
Rev Sci Instrum ; 86(7): 072208, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26233348

RESUMO

Complementary advances in high pressure research apparatus and techniques make it possible to carry out time-resolved high pressure research using what would customarily be considered static high pressure apparatus. This work specifically explores time-resolved high pressure x-ray diffraction with rapid compression and/or decompression of a sample in a diamond anvil cell. Key aspects of the synchrotron beamline and ancillary equipment are presented, including source considerations, rapid (de)compression apparatus, high frequency imaging detectors, and software suitable for processing large volumes of data. A number of examples are presented, including fast equation of state measurements, compression rate dependent synthesis of metastable states in silicon and germanium, and ultrahigh compression rates using a piezoelectric driven diamond anvil cell.

12.
Rev Sci Instrum ; 86(7): 072209, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26233349

RESUMO

The ability to remotely control pressure in diamond anvil cells (DACs) in accurate and consistent manner at room temperature, as well as at cryogenic and elevated temperatures, is crucial for effective and reliable operation of a high-pressure synchrotron facility such as High Pressure Collaborative Access Team (HPCAT). Over the last several years, a considerable effort has been made to develop instrumentation for remote and automated pressure control in DACs during synchrotron experiments. We have designed and implemented an array of modular pneumatic (double-diaphragm), mechanical (gearboxes), and piezoelectric devices and their combinations for controlling pressure and compression/decompression rate at various temperature conditions from 4 K in cryostats to several thousand Kelvin in laser-heated DACs. Because HPCAT is a user facility and diamond cells for user experiments are typically provided by users, our development effort has been focused on creating different loading mechanisms and frames for a variety of existing and commonly used diamond cells rather than designing specialized or dedicated diamond cells with various drives. In this paper, we review the available instrumentation for remote static and dynamic pressure control in DACs and show some examples of their applications to high pressure research.

13.
J Synchrotron Radiat ; 19(Pt 2): 245-51, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22338686

RESUMO

Core-shell X-ray emission spectroscopy (XES) is a valuable complement to X-ray absorption spectroscopy (XAS) techniques. However, XES in the hard X-ray regime is much less frequently employed than XAS, often as a consequence of the relative scarcity of XES instrumentation having energy resolutions comparable with the relevant core-hole lifetimes. To address this, a family of inexpensive and easily operated short-working-distance X-ray emission spectrometers has been developed. The use of computer-aided design and rapid prototype machining of plastics allows customization for various emission lines having energies from ∼3 keV to ∼10 keV. The specific instrument described here, based on a coarsely diced approximant of the Johansson optic, is intended to study volume collapse in Pr metal and compounds by observing the pressure dependence of the Pr Lα emission spectrum. The collection solid angle is ∼50 msr, roughly equivalent to that of six traditional spherically bent crystal analyzers. The miniature X-ray emission spectrometer (miniXES) methodology will help encourage the adoption and broad application of high-resolution XES capabilities at hard X-ray synchrotron facilities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...