Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microsc Microanal ; : 1-8, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35440356

RESUMO

In this study, binary as-cast Al­Cu alloys: Al25Cu (Al­25%Cu) and Al45Cu (Al­45%Cu) (in wt%) were severely plastically deformed by extrusion combined with a reversible torsion (KoBo) method to produce an ultrafine-grained structure (UFG). The binary Al­Cu alloys consist of α-Al and intermetallic Al2Cu phases. The morphology and volume fraction of α-Al and Al2Cu phases depend on the Cu content. The KoBo process was carried out using extrusion ratios of λ = 30 and λ = 98. The effect of phase refinement has been studied by means of scanning electron microscopy with electron backscattering diffraction and scanning transmission electron microscopy. The mechanical properties were assessed using compression tests. Detailed microstructural analysis shows that after the KoBo process, a large number fraction of high-angle boundaries (HABs) and a very fine grain structure (~2­4 µm) in both phases are created. An increase of λ ratio during the KoBo processing leads to a decrease in average grain size of α-Al and Al2Cu phases and an increase in fraction of HABs. UFG microstructure and high fraction of HABs provide the grain boundary sliding mechanism during KoBo deformation. UFG microstructure contributes to the enhanced mechanical properties. Compressive strength (Rc) of Al25Cu alloy increases from 172 to 340 MPa with an increase of λ. Compressive strain (Sc) for Al25Cu alloy increased from 35 to 67% with an increase of λ. High fraction of intermetallic phase in Al45Cu alloy was responsible for room temperature strengthening of alloy and low compressive strain. The deformed Al45Cu alloy with λ = 30 showed that Rc is 194 MPa and Sc is equal to 10%.

2.
Materials (Basel) ; 13(24)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33353227

RESUMO

The binary as-cast Al-Cu alloys Al-5%Cu, Al-25%Cu, and Al-33%Cu (in wt %), composed of the intermetallic θ-Al2Cu and α-Al phases, were prepared from pure components and were subsequently severely plastically deformed by extrusion combined with reversible torsion (KoBo) to refinement of α-Al and Al2Cu phases. The extrusion combined with reversible torsion was carried out using extrusion coefficients of λ = 30 and λ = 98. KoBo applied to the Al-Cu alloys with different initial structures (differences in fraction and phase size) allowed us to obtain for alloys (Al-25%Cu and Al-33%Cu), with higher value of intermetallic phase, large elongations in the range of 830-1100% after tensile tests at the temperature of 400 °C with the strain rate of 10-4 s-1. The value of elongation depended on extrusion coefficient and increase, with λ increasing as a result of α-Al and Al2Cu phase refinement to about 200-400 nm. Deformation at the temperature of 300 °C, independently of the extrusion coefficient (λ), did not ensure superplastic properties of the analyzed alloys. A microstructural study showed that the mechanism of grain boundary sliding was responsible for superplastic deformation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...