Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Sci ; 111(5): 1829-1839, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32162442

RESUMO

Lysine acetyltransferases (KATs) are a highly diverse group of epigenetic enzymes that play important roles in various cellular processes including transcription, signal transduction, and cellular metabolism. However, our knowledge of the genomic and transcriptomic alterations of KAT genes and their clinical significance in human cancer remains incomplete. We undertook a metagenomic analysis of 37 KATs in more than 10 000 cancer samples across 33 tumor types, focusing on breast cancer. We identified associations among recurrent genetic alteration, gene expression, clinicopathologic features, and patient survival. Loss-of-function analysis was carried out to examine which KAT has important roles in growth and viability of breast cancer cells. We identified that a subset of KAT genes, including NAA10, KAT6A, and CREBBP, have high frequencies of genomic amplification or mutation in a spectrum of human cancers. Importantly, we found that 3 KATs, NAA10, ACAT2, and BRD4, were highly expressed in the aggressive basal-like subtype, and their expression was significantly associated with disease-free survival. Furthermore, we showed that depletion of NAA10 inhibits basal-like breast cancer growth in vitro. Our findings provide a strong foundation for further mechanistic research and for developing therapies that target NAA10 or other KATs in human cancer.


Assuntos
Genoma Humano/genética , Lisina Acetiltransferases/genética , Neoplasias/genética , Neoplasias/patologia , Neoplasias da Mama/classificação , Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Proteína de Ligação a CREB/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Sobrevivência Celular/genética , Intervalo Livre de Doença , Proteína p300 Associada a E1A/genética , Dosagem de Genes , Expressão Gênica , Histona Acetiltransferases/genética , Humanos , Lisina Acetiltransferases/metabolismo , Mutação , Acetiltransferase N-Terminal A/genética , Acetiltransferase N-Terminal A/metabolismo , Acetiltransferase N-Terminal E/genética , Acetiltransferase N-Terminal E/metabolismo , Neoplasias/mortalidade , Prognóstico , Fatores Associados à Proteína de Ligação a TATA/genética , Fator de Transcrição TFIID/genética , Fatores de Transcrição/genética
2.
RNA Biol ; 17(4): 474-486, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31957540

RESUMO

RNA methylation, catalysed by a set of RNA methyltransferases (RNMTs), modulates RNA structures, properties, and biological functions. RNMTs are increasingly documented to be dysregulated in various human diseases, particularly developmental disorders and cancer. However, the genomic and transcriptomic alterations of RNMTs, as well as their functional roles in human cancer, are limited. In this study, we utilized an unbiased approach to examine copy number alterations and mutation rates of 58 RNMTs in more than 10,000 clinical samples across 32 human cancer types. We also investigated these alterations and RNMT expression level as they related to clinical features such as tumour subtype, grade, and survival in a large cohort of tumour samples, focusing on breast cancer. Loss-of-function analysis was performed to examine RNMT candidates with important roles in growth and viability of breast cancer cells. We identified a subset of RNMTs, notably TRMT12, NSUN2, TARBP1, and FTSJ3, that were amplified or mutated in a subset of human cancers. Several RNMTs were significantly associated with breast cancer aggressiveness and poor prognosis. Loss-of-function analysis indicated FTSJ3, a 2'-O-Me methyltransferase, as a candidate RNMT with functional roles in promoting cancer growth and survival. A subset of RNMTs, like FTSJ3, represents promising novel targets for anticancer drug discovery. Our findings provide a framework for further study of the functional consequences of RNMT alterations in human cancer and for developing therapies that target cancer-promoting RNMTs in the future.


Assuntos
Neoplasias da Mama/genética , Mutação com Perda de Função , Metiltransferases/genética , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Progressão da Doença , Feminino , Amplificação de Genes , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA