Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Talanta ; 114: 304-10, 2013 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-23953475

RESUMO

In this study methods for the quantification of baicalin and total baicalein in Scutellariae radix with near infrared (NIR) spectroscopy and attenuated-total-reflectance mid-infrared (ATR-IR) spectroscopy in hyphenation with multivariate analysis were developed and compared. The reference analysis was performed by high performance liquid chromatography coupled to diode array detection (HPLC-DAD). Different pretreatments like standard normal variate (SNV), multiplicative scatter correction (MSC), first and second derivative Savitzky-Golay were applied on the spectra to optimize the calibrations. A principal component analysis was performed with both spectroscopic methods to distinguish wild and cultivated samples. Quality parameters obtained for test-set calibration models of ATR-IR spectroscopy (baicalin: standard error of prediction (SEP)=1.31, ratio performance to deviation (RPD)=2.91 and R(2)=0.88; total baicalein: SEP=1.02, RPD=3.24 and R(2)=0.89) and NIR spectroscopy (baicalin: SEP=1.50, RPD=2.54 and R(2)=0.88; total baicalein: SEP=1.19, RPD=2.76 and R(2)=0.84) demonstrate that both spectroscopic techniques in combination with multivariate analysis are successful tools for the quantification of baicalin and total baicalein in Scutellariae radix, but it was found that ATR-IR spectroscopy provides higher accuracy in the given application. Furthermore it was proved that wild and cultivated samples can be distinguished by ATR-IR.


Assuntos
Flavanonas/análise , Flavonoides/análise , Raízes de Plantas/química , Scutellaria baicalensis , Análise dos Mínimos Quadrados , Análise de Componente Principal , Espectrofotometria Infravermelho/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA