Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Comp Neurol ; 526(8): 1235-1266, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29297931

RESUMO

Genes including FOXP2, FOXP1, and CNTNAP2, have been implicated in human speech and language phenotypes, pointing to a role in the development of normal language-related circuitry in the brain. Although speech and language are unique to humans a comparative approach is possible by addressing language-relevant traits in animal systems. One such trait, vocal learning, represents an essential component of human spoken language, and is shared by cetaceans, pinnipeds, elephants, some birds and bats. Given their vocal learning abilities, gregarious nature, and reliance on vocalizations for social communication and navigation, bats represent an intriguing mammalian system in which to explore language-relevant genes. We used immunohistochemistry to detail the distribution of FoxP2, FoxP1, and Cntnap2 proteins, accompanied by detailed cytoarchitectural histology in the brains of two vocal learning bat species; Phyllostomus discolor and Rousettus aegyptiacus. We show widespread expression of these genes, similar to what has been previously observed in other species, including humans. A striking difference was observed in the adult P. discolor bat, which showed low levels of FoxP2 expression in the cortex that contrasted with patterns found in rodents and nonhuman primates. We created an online, open-access database within which all data can be browsed, searched, and high resolution images viewed to single cell resolution. The data presented herein reveal regions of interest in the bat brain and provide new opportunities to address the role of these language-related genes in complex vocal-motor and vocal learning behaviors in a mammalian model system.


Assuntos
Mapeamento Encefálico , Encéfalo/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Aprendizagem/fisiologia , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Vocalização Animal/fisiologia , Animais , Encéfalo/anatomia & histologia , Quirópteros , Especificidade da Espécie
2.
BMC Med Genet ; 17: 8, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26843181

RESUMO

BACKGROUND: Heterozygous mutations in CNTNAP2 have been identified in patients with a range of complex phenotypes including intellectual disability, autism and schizophrenia. However heterozygous CNTNAP2 mutations are also found in the normal population. Conversely, homozygous mutations are rare in patient populations and have not been found in any unaffected individuals. CASE PRESENTATION: We describe a consanguineous family carrying a deletion in CNTNAP2 predicted to abolish function of its protein product, CASPR2. Homozygous family members display epilepsy, facial dysmorphisms, severe intellectual disability and impaired language. We compared these patients with previously reported individuals carrying homozygous mutations in CNTNAP2 and identified a highly recognisable phenotype. CONCLUSIONS: We propose that CASPR2 loss produces a syndrome involving early-onset refractory epilepsy, intellectual disability, language impairment and autistic features that can be recognized as CASPR2 deficiency disorder. Further screening for homozygous patients meeting these criteria, together with detailed phenotypic and molecular investigations will be crucial for understanding the contribution of CNTNAP2 to normal and disrupted development.


Assuntos
Transtorno Autístico/genética , Epilepsia/genética , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Pré-Escolar , Feminino , Deleção de Genes , Heterozigoto , Humanos , Lactente , Deficiência Intelectual/genética , Transtornos da Linguagem/genética , Mutação , Linhagem , Fenótipo , Análise de Sequência de DNA , Síndrome
3.
BMC Genomics ; 16: 836, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26490347

RESUMO

BACKGROUND: Bats are able to employ an astonishingly complex vocal repertoire for navigating their environment and conveying social information. A handful of species also show evidence for vocal learning, an extremely rare ability shared only with humans and few other animals. However, despite their potential for the study of vocal communication, bats remain severely understudied at a molecular level. To address this fundamental gap we performed the first transcriptome profiling and genetic interrogation of molecular networks in the brain of a highly vocal bat species, Phyllostomus discolor. RESULTS: Gene network analysis typically needs large sample sizes for correct clustering, this can be prohibitive where samples are limited, such as in this study. To overcome this, we developed a novel bioinformatics methodology for identifying robust co-expression gene networks using few samples (N=6). Using this approach, we identified tissue-specific functional gene networks from the bat PAG, a brain region fundamental for mammalian vocalisation. The most highly connected network identified represented a cluster of genes involved in glutamatergic synaptic transmission. Glutamatergic receptors play a significant role in vocalisation from the PAG, suggesting that this gene network may be mechanistically important for vocal-motor control in mammals. CONCLUSION: We have developed an innovative approach to cluster co-expressing gene networks and show that it is highly effective in detecting robust functional gene networks with limited sample sizes. Moreover, this work represents the first gene network analysis performed in a bat brain and establishes bats as a novel, tractable model system for understanding the genetics of vocal mammalian communication.


Assuntos
Quirópteros/genética , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Transcriptoma , Animais , Encéfalo/fisiologia , Quirópteros/fisiologia , Análise por Conglomerados , Regulação da Expressão Gênica , Modelos Genéticos , Especificidade de Órgãos/genética , Transmissão Sináptica/genética , Vocalização Animal
4.
Nat Med ; 21(1): 62-70, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25419707

RESUMO

Hereditary mixed polyposis syndrome (HMPS) is characterized by the development of mixed-morphology colorectal tumors and is caused by a 40-kb genetic duplication that results in aberrant epithelial expression of the gene encoding mesenchymal bone morphogenetic protein antagonist, GREM1. Here we use HMPS tissue and a mouse model of the disease to show that epithelial GREM1 disrupts homeostatic intestinal morphogen gradients, altering cell fate that is normally determined by position along the vertical epithelial axis. This promotes the persistence and/or reacquisition of stem cell properties in Lgr5-negative progenitor cells that have exited the stem cell niche. These cells form ectopic crypts, proliferate, accumulate somatic mutations and can initiate intestinal neoplasia, indicating that the crypt base stem cell is not the sole cell of origin of colorectal cancer. Furthermore, we show that epithelial expression of GREM1 also occurs in traditional serrated adenomas, sporadic premalignant lesions with a hitherto unknown pathogenesis, and these lesions can be considered the sporadic equivalents of HMPS polyps.


Assuntos
Carcinogênese/genética , Neoplasias Colorretais/genética , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Nicho de Células-Tronco/genética , Animais , Proliferação de Células/genética , Neoplasias Colorretais/patologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Camundongos , Mutação , Receptores Acoplados a Proteínas G/genética
5.
Eur J Hum Genet ; 22(2): 171-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23714751

RESUMO

The genetic basis of complex neurological disorders involving language are poorly understood, partly due to the multiple additive genetic risk factors that are thought to be responsible. Furthermore, these conditions are often syndromic in that they have a range of endophenotypes that may be associated with the disorder and that may be present in different combinations in patients. However, the emergence of individual genes implicated across multiple disorders has suggested that they might share similar underlying genetic mechanisms. The CNTNAP2 gene is an excellent example of this, as it has recently been implicated in a broad range of phenotypes including autism spectrum disorder (ASD), schizophrenia, intellectual disability, dyslexia and language impairment. This review considers the evidence implicating CNTNAP2 in these conditions, the genetic risk factors and mutations that have been identified in patient and population studies and how these relate to patient phenotypes. The role of CNTNAP2 is examined in the context of larger neurogenetic networks during development and disorder, given what is known regarding the regulation and function of this gene. Understanding the role of CNTNAP2 in diverse neurological disorders will further our understanding of how combinations of individual genetic risk factors can contribute to complex conditions.


Assuntos
Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Sequência de Aminoácidos , Animais , Predisposição Genética para Doença , Humanos , Transtornos do Desenvolvimento da Linguagem/genética , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Rede Nervosa/patologia , Doenças do Sistema Nervoso/genética , Polimorfismo de Nucleotídeo Único , Fatores de Risco
6.
Gut ; 62(1): 83-93, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22287596

RESUMO

OBJECTIVE: Wnt signalling is critical for normal intestinal development and homeostasis. Wnt dysregulation occurs in almost all human and murine intestinal tumours and an optimal but not excessive level of Wnt activation is considered favourable for tumourigenesis. The authors assessed effects of pan-intestinal Wnt activation on tissue homeostasis, taking into account underlying physiological Wnt activity and stem-cell number in each region of the bowel. DESIGN: The authors generated mice that expressed temporally controlled, stabilised ß-catenin along the crypt-villus axis throughout the intestines. Physiological Wnt target gene activity was assessed in different regions of normal mouse and human tissue. Human intestinal tumour mutation spectra were analysed. RESULTS: In the mouse, ß-catenin stabilisation resulted in a graduated neoplastic response, ranging from dysplastic transformation of the entire epithelium in the proximal small bowel to slightly enlarged crypts of non-dysplastic morphology in the colorectum. In contrast, stem and proliferating cell numbers were increased in all intestinal regions. In the normal mouse and human intestines, stem-cell and Wnt gradients were non-identical, but higher in the small bowel than large bowel in both species. There was also variation in the expression of some Wnt modulators. Human tumour analysis confirmed that different APC mutation spectra are selected in different regions of the bowel. CONCLUSIONS: There are variable gradients in stem-cell number, physiological Wnt activity and response to pathologically increased Wnt signalling along the crypt-villus axis and throughout the length of the intestinal tract. The authors propose that this variation influences regional mutation spectra, tumour susceptibility and lesion distribution in mice and humans.


Assuntos
Biomarcadores Tumorais/metabolismo , Mucosa Intestinal/metabolismo , Neoplasias Intestinais/metabolismo , Células-Tronco/fisiologia , Via de Sinalização Wnt/fisiologia , Animais , Biomarcadores Tumorais/genética , Contagem de Células , Genes APC , Marcadores Genéticos , Homeostase , Humanos , Hibridização In Situ , Mucosa Intestinal/citologia , Mucosa Intestinal/patologia , Neoplasias Intestinais/genética , Neoplasias Intestinais/patologia , Intestinos/citologia , Intestinos/patologia , Camundongos , Camundongos Transgênicos , Mutação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...