Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Transplant ; 23(1): 101-107, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36695611

RESUMO

Although the risk of SARS-CoV-2 transmission through lung transplantation from acutely infected donors is high, the risks of virus transmission and long-term lung allograft outcomes are not as well described when using pulmonary organs from COVID-19-recovered donors. We describe successful lung transplantation for a COVID-19-related lung injury using lungs from a COVID-19-recovered donor who was retrospectively found to have detectable genomic SARS-CoV-2 RNA in the lung tissue by multiple highly sensitive assays. However, SARS-CoV-2 subgenomic RNA (sgRNA), a marker of viral replication, was not detectable in the donor respiratory tissues. One year after lung transplantation, the recipient has a good functional status, walking 1 mile several times per week without the need for supplemental oxygen and without any evidence of donor-derived SARS-CoV-2 transmission. Our findings highlight the limitations of current clinical laboratory diagnostic assays in detecting the persistence of SARS-CoV-2 RNA in the lung tissue. The persistence of SARS-CoV-2 RNA in the donor tissue did not appear to represent active viral replication via sgRNA testing and, most importantly, did not negatively impact the allograft outcome in the first year after lung transplantation. sgRNA is easily performed and may be a useful assay for assessing viral infectivity in organs from donors with a recent infection.


Assuntos
COVID-19 , Transplante de Pulmão , Humanos , SARS-CoV-2/genética , RNA Subgenômico , RNA Viral/genética , Estudos Retrospectivos , Aloenxertos
2.
Clin Infect Dis ; 76(4): 573-581, 2023 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-36200701

RESUMO

BACKGROUND: Nirmatrelvir/ritonavir, the first severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) protease inhibitor, reduces the risk of hospitalization and death by coronavirus disease 2019 (COVID-19) but has been associated with symptomatic rebound after therapy completion. METHODS: Six individuals with relapse of COVID-19 symptoms after treatment with nirmatrelvir/ritonavir, 2 individuals with rebound symptoms without prior antiviral therapy and 7 patients with acute Omicron infection (controls) were studied. Soluble biomarkers and serum SARS-CoV-2 nucleocapsid protein were measured. Nasal swabs positive for SARS-CoV-2 underwent viral isolation and targeted viral sequencing. SARS-CoV-2 anti-spike, anti-receptor-binding domain, and anti-nucleocapsid antibodies were measured. Surrogate viral neutralization tests against wild-type and Omicron spike protein, as well as T-cell stimulation assays, were performed. RESULTS: High levels of SARS-CoV-2 anti-spike immunoglobulin G (IgG) antibodies were found in all participants. Anti-nucleocapsid IgG and Omicron-specific neutralizing antibodies increased in patients with rebound. Robust SARS-CoV-2-specific T-cell responses were observed, higher in rebound compared with early acute COVID-19 patients. Inflammatory markers mostly decreased during rebound. Two patients sampled longitudinally demonstrated an increase in activated cytokine-producing CD4+ T cells against viral proteins. No characteristic resistance mutations were identified. SARS-CoV-2 was isolated by culture from 1 of 8 rebound patients; Polybrene addition increased this to 5 of 8. CONCLUSIONS: Nirmatrelvir/ritonavir treatment does not impede adaptive immune responses to SARS-CoV-2. Clinical rebound corresponds to development of a robust antibody and T-cell immune response, arguing against a high risk of disease progression. The presence of infectious virus supports the need for isolation and assessment of longer treatment courses. CLINICAL TRIALS REGISTRATION: NCT04401436.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Ritonavir , Tratamento Farmacológico da COVID-19 , Antivirais , Imunoglobulina G , Anticorpos Antivirais
3.
Proc Natl Acad Sci U S A ; 119(23): e2118836119, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35653572

RESUMO

Rapid identification of newly emerging or circulating viruses is an important first step toward managing the public health response to potential outbreaks. A portable virus capture device, coupled with label-free Raman spectroscopy, holds the promise of fast detection by rapidly obtaining the Raman signature of a virus followed by a machine learning (ML) approach applied to recognize the virus based on its Raman spectrum, which is used as a fingerprint. We present such an ML approach for analyzing Raman spectra of human and avian viruses. A convolutional neural network (CNN) classifier specifically designed for spectral data achieves very high accuracy for a variety of virus type or subtype identification tasks. In particular, it achieves 99% accuracy for classifying influenza virus type A versus type B, 96% accuracy for classifying four subtypes of influenza A, 95% accuracy for differentiating enveloped and nonenveloped viruses, and 99% accuracy for differentiating avian coronavirus (infectious bronchitis virus [IBV]) from other avian viruses. Furthermore, interpretation of neural net responses in the trained CNN model using a full-gradient algorithm highlights Raman spectral ranges that are most important to virus identification. By correlating ML-selected salient Raman ranges with the signature ranges of known biomolecules and chemical functional groups­for example, amide, amino acid, and carboxylic acid­we verify that our ML model effectively recognizes the Raman signatures of proteins, lipids, and other vital functional groups present in different viruses and uses a weighted combination of these signatures to identify viruses.


Assuntos
Aprendizado de Máquina , Redes Neurais de Computação , Vírus , Surtos de Doenças , Pandemias , Sorogrupo , Vírus/classificação
4.
medRxiv ; 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35734093

RESUMO

Clinical rebound of COVID-19 after nirmatrelvir/ritonavir treatment has been reported. We performed clinical, virologic, and immune measurements in seven patients with symptomatic rebound, six after nirmatrelvir/ritonavir treatment and one without previous treatment. There was no evidence of severe disease or impaired antibody and T-cell responses in people with rebound symptoms.

5.
J Infect Dis ; 225(7): 1118-1123, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34940844

RESUMO

B-cell-depleting therapies may lead to prolonged disease and viral shedding in individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and this viral persistence raises concern for viral evolution. We report sequencing of early and late samples from a 335-day infection in an immunocompromised patient. The virus accumulated a unique deletion in the amino-terminal domain of the spike protein, and complete deletion of ORF7b and ORF8, the first report of its kind in an immunocompromised patient. Unique viral mutations found in this study highlight the importance of analyzing viral evolution in protracted SARS-CoV-2 infection, especially in immunosuppressed hosts.


Assuntos
COVID-19 , SARS-CoV-2 , Linfócitos B , Humanos , Hospedeiro Imunocomprometido , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Eliminação de Partículas Virais
6.
medRxiv ; 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34642697

RESUMO

BACKGROUND: B-cell depleting therapies may lead to protracted disease and prolonged viral shedding in individuals infected with SARS-CoV-2. Viral persistence in the setting of immunosuppression raises concern for viral evolution. METHODS: Amplification of sub-genomic transcripts for the E gene (sgE) was done on nasopharyngeal samples over the course of 355 days in a patient infected with SARS-CoV-2 who had previously undergone CAR T cell therapy and had persistently positive SARS-CoV-2 nasopharyngeal swabs. Whole genome sequencing was performed on samples from the patient's original presentation and 10 months later. RESULTS: Over the course of almost a year, the virus accumulated a unique in-frame deletion in the amino-terminal domain of the spike protein, and complete deletion of ORF7b and ORF8, the first report of its kind in an immunocompromised patient. Also, minority variants that were identified in the early samples-reflecting the heterogeneity of the initial infection-were found to be fixed late in the infection. Remdesivir and high-titer convalescent plasma treatment were given, and the infection was eventually cleared after 335 days of infection. CONCLUSIONS: The unique viral mutations found in this study highlight the importance of analyzing viral evolution in protracted SARS-CoV-2 infection, especially in immunosuppressed hosts, and the implication of these mutations in the emergence of viral variants. SUMMARY: We report an immunocompromised patient with persistent symptomatic SARS-CoV-2 infection for 335 days. During this time, the virus accumulated a unique in-frame deletion in the spike, and a complete deletion of ORF7b and ORF8 which is the first report of its kind in an immunocompromised patient.

8.
PLoS Pathog ; 15(2): e1007163, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30730994

RESUMO

Hepatitis C virus (HCV) assembly and envelopment are coordinated by a complex protein interaction network that includes most of the viral structural and nonstructural proteins. While the nonstructural protein 4A (NS4A) is known to be important for viral particle production, the specific function of NS4A in this process is not well understood. We performed mutagenesis of the C-terminal acidic domain of NS4A and found that mutation of several of these amino acids prevented the formation of the viral envelope, and therefore the production of infectious virions, without affecting viral RNA replication. In an overexpression system, we found that NS4A interacted with several viral proteins known to coordinate envelopment, including the viral E1 glycoprotein. One of the NS4A C-terminal mutations, Y45F, disrupted the interaction of NS4A with E1. Specifically, NS4A interacted with the first hydrophobic region of E1, a region previously described as regulating viral particle production. Indeed, we found that an E1 mutation in this region, D72A, also disrupted the interaction of NS4A with E1. Supernatants from HCV NS4A Y45F transfected cells had significantly reduced levels of HCV RNA, however they contained equivalent levels of Core protein. Interestingly, the Core protein secreted from these cells formed high order oligomers with a density matching the infectious virus secreted from wild-type cells. These results suggest that this Y45F mutation in NS4A causes secretion of low-density Core particles lacking genomic HCV RNA. These results corroborate previous findings showing that the E1 D72A mutation also causes secretion of Core complexes lacking genomic HCV RNA, and therefore suggest that the interaction between NS4A and E1 is involved in the incorporation of viral RNA into infectious HCV particles. Our findings define a new role for NS4A in the HCV lifecycle and help elucidate the protein interactions necessary for production of infectious virus.


Assuntos
Proteínas de Transporte/metabolismo , Hepacivirus/fisiologia , Proteínas do Envelope Viral/metabolismo , Proteínas não Estruturais Virais/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Proteínas de Transporte/genética , Linhagem Celular , Hepacivirus/genética , Hepacivirus/metabolismo , Hepatite C Crônica/virologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Mutação , Domínios Proteicos , RNA Viral , Proteínas do Envelope Viral/genética , Proteínas não Estruturais Virais/genética , Vírion/metabolismo , Vírion/fisiologia , Montagem de Vírus , Replicação Viral
9.
Methods Mol Biol ; 1911: 209-217, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30593628

RESUMO

The infectious virion of hepatitis C virus (HCV) is made up of the viral nucleocapsid surrounded by an envelope that contains an ER-derived membrane bilayer, cellular lipids, and the viral E1 and E2 glycoproteins. Because the infectious HCV particle contains both protein and lipid layers, selective disruption of these layers and analysis for the presence or absence of resulting virion components can be used to study the virion assembly process. This chapter describes an experimental method to measure HCV virion envelopment, which can reveal the mechanisms of how specific viral protein-protein interactions and host factors contribute to the process of HCV envelopment.


Assuntos
Endopeptidase K/metabolismo , Hepacivirus/fisiologia , Hepatite C/virologia , Proteínas do Core Viral/metabolismo , Vírion/fisiologia , Técnicas de Cultura de Células/métodos , Linhagem Celular , Eletroporação/métodos , Hepacivirus/genética , Humanos , Immunoblotting/métodos , RNA Viral/genética , Proteínas do Core Viral/genética , Vírion/genética , Montagem de Vírus
10.
Viruses ; 10(2)2018 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-29495257

RESUMO

Zika virus (ZIKV) is a re-emerging flavivirus that is transmitted to humans through the bite of an infected mosquito or through sexual contact with an infected partner. ZIKV infection during pregnancy has been associated with numerous fetal abnormalities, including prenatal lethality and microcephaly. However, until recent outbreaks in the Americas, ZIKV has been relatively understudied, and therefore the biology and pathogenesis of ZIKV infection remain incompletely understood. Better methods to study ZIKV infection in live cells could enhance our understanding of the biology of ZIKV and the mechanisms by which ZIKV contributes to fetal abnormalities. To this end, we developed a fluorescent cell-based reporter system allowing for live imaging of ZIKV-infected cells. This system utilizes the protease activity of the ZIKV non-structural proteins 2B and 3 (NS2B-NS3) to specifically mark virus-infected cells. Here, we demonstrate the utility of this fluorescent reporter for identifying cells infected by ZIKV strains of two lineages. Further, we use this system to determine that apoptosis is induced in cells directly infected with ZIKV in a cell-autonomous manner. Ultimately, approaches that can directly track ZIKV-infected cells at the single cell-level have the potential to yield new insights into the host-pathogen interactions that regulate ZIKV infection and pathogenesis.


Assuntos
Técnicas Citológicas/métodos , Genes Reporter/genética , Microscopia de Fluorescência , Imagem Óptica , Proteínas não Estruturais Virais/genética , Infecção por Zika virus/virologia , Zika virus/genética , Transporte Ativo do Núcleo Celular , Animais , Morte Celular , Linhagem Celular , Núcleo Celular/metabolismo , Proteínas de Fluorescência Verde/genética , Humanos , Plasmídeos , Serina Endopeptidases/metabolismo , Virologia , Zika virus/classificação , Infecção por Zika virus/patologia
11.
Cell Host Microbe ; 20(5): 654-665, 2016 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-27773535

RESUMO

The RNA modification N6-methyladenosine (m6A) post-transcriptionally regulates RNA function. The cellular machinery that controls m6A includes methyltransferases and demethylases that add or remove this modification, as well as m6A-binding YTHDF proteins that promote the translation or degradation of m6A-modified mRNA. We demonstrate that m6A modulates infection by hepatitis C virus (HCV). Depletion of m6A methyltransferases or an m6A demethylase, respectively, increases or decreases infectious HCV particle production. During HCV infection, YTHDF proteins relocalize to lipid droplets, sites of viral assembly, and their depletion increases infectious viral particles. We further mapped m6A sites across the HCV genome and determined that inactivating m6A in one viral genomic region increases viral titer without affecting RNA replication. Additional mapping of m6A on the RNA genomes of other Flaviviridae, including dengue, Zika, yellow fever, and West Nile virus, identifies conserved regions modified by m6A. Altogether, this work identifies m6A as a conserved regulatory mark across Flaviviridae genomes.


Assuntos
Adenosina/análogos & derivados , Flaviviridae/genética , Flaviviridae/fisiologia , Regulação Viral da Expressão Gênica , Interações Hospedeiro-Patógeno , RNA Viral/metabolismo , Replicação Viral , Adenosina/metabolismo , Metiltransferases/metabolismo , Oxirredutases N-Desmetilantes/metabolismo , Carga Viral
12.
J Virol ; 89(22): 11523-33, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26355084

RESUMO

UNLABELLED: The molecular mechanisms that govern hepatitis C virus (HCV) assembly, release, and infectivity are still not yet fully understood. In the present study, we sequenced a genotype 2A strain of HCV (JFH-1) that had been cell culture adapted in Huh-7.5 cells to produce nearly 100-fold-higher viral titers than the parental strain. Sequence analysis identified nine mutations in the genome, present within both the structural and nonstructural genes. The infectious clone of this virus containing all nine culture-adapted mutations had 10-fold-higher levels of RNA replication and RNA release into the supernatant but had nearly 1,000-fold-higher viral titers, resulting in an increased specific infectivity compared to wild-type JFH-1. Two mutations, identified in the p7 polypeptide and NS5B RNA-dependent RNA polymerase, were sufficient to increase the specific infectivity of JFH-1. We found that the culture-adapted mutation in p7 promoted an increase in the size of cellular lipid droplets following transfection of viral RNA. In addition, we found that the culture-adaptive mutations in p7 and NS5B acted synergistically to enhance the specific viral infectivity of JFH-1 by decreasing the level of sphingomyelin in the virion. Overall, these results reveal a genetic interaction between p7 and NS5B that contributes to virion specific infectivity. Furthermore, our results demonstrate a novel role for the RNA-dependent RNA polymerase NS5B in HCV assembly. IMPORTANCE: Hepatitis C virus assembly and release depend on viral interactions with host lipid metabolic pathways. Here, we demonstrate that the viral p7 and NS5B proteins cooperate to promote virion infectivity by decreasing sphingomyelin content in the virion. Our data uncover a new role for the viral RNA-dependent RNA polymerase NS5B and p7 proteins in contributing to virion morphogenesis. Overall, these findings are significant because they reveal a genetic interaction between p7 and NS5B, as well as an interaction with sphingomyelin that regulates virion infectivity. Our data provide new strategies for targeting host lipid-virus interactions as potential targets for therapies against HCV infection.


Assuntos
Hepacivirus/patogenicidade , Lipoproteínas HDL/metabolismo , Esfingomielinas/metabolismo , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais/metabolismo , Vírion/patogenicidade , Sequência de Bases , Linhagem Celular Tumoral , Hepacivirus/genética , Hepacivirus/metabolismo , Hepatite C/virologia , Humanos , Gotículas Lipídicas/fisiologia , RNA Viral/biossíntese , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Análise de Sequência de RNA , Carga Viral/genética , Proteínas não Estruturais Virais/genética , Proteínas Virais/genética , Vírion/genética , Vírion/metabolismo , Montagem de Vírus/genética , Replicação Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...