Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Curr Pharm Des ; 26(14): 1556-1565, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32183660

RESUMO

BACKGROUND: Vaginal infections caused by non-albicans species have become common in women of all age groups. The resistance of species such as Candida parapsilosis to the various antifungal agents is a risk factor attributed to these types of infections, which instigates the search for new sources of active compounds in vulvovaginal candidiasis (VCC) therapy. OBJECTIVE: This study evaluated the antifungal activity of Syngonanthus nitens Bong. (Ruhland) derivatives and employed a lipid nanoemulsion as a delivery system.' METHODS: In this study, a lipid nanoemulsion was employed as a delivery system composed of Cholesterol (10%), soybean phosphatidylcholine: Brij 58 (1: 2) and PBS (pH 7.4) with the addition of 0.5% of a chitosan dispersion (80%), and evaluated the antifungal activity of S. nitens Bong. (Ruhland) derivatives against planktonic cells and biofilms of Candida parapsilosis. By a biomonitoring fractionation, the crude extract (EXT) and one fraction (F2) were selected and incorporated into a lipid nanoemulsion (NL) composed of cholesterol (10%), a 1:2 mixture of soybean phosphatidylcholine:polyoxyethylene -20- cetyl ether (10%), and phosphate buffer solution (pH 7.4) with a 0.5% chitosan dispersion (80%). The NL presented a diameter size between 50-200 nm, pseudoplastic behavior, and positive charge. The EXT and five fractions were active against planktonic cells. RESULTS AND DISCUSSION: The incorporation of EXT and F2 into the NL increased antifungal activity and enhanced the anti-biofilm potential. This study classified the use of an NL as an important tool for the administration of S. nitens derivatives in cases of infections caused by this C. parapsisilosis. CONCLUSION: This work concluded that S. nitens derivatives were important sources of active molecules against C. parapsilosis and the use of a lipid nanoemulsion was an important tool to promote more effective F2 release and to improve the antifungal activity aiming the control of C. parapsilosis infections.


Assuntos
Antifúngicos/farmacologia , Candidíase Vulvovaginal , Eriocaulaceae , Antifúngicos/química , Antifúngicos/uso terapêutico , Biofilmes , Candida parapsilosis , Candidíase Vulvovaginal/tratamento farmacológico , Feminino , Humanos , Lipídeos/química , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Extratos Vegetais/farmacologia
2.
J Biomed Mater Res B Appl Biomater ; 108(4): 1388-1397, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31512818

RESUMO

The pivotal issue of skin regeneration research is the development of effective biomaterials that exhibit biological activities as fungicide and bactericide, combining simple and low cost manufacturing technologies. In this context, nanocomposite scaffolds based on chitosan (Ch)/Laponite (Lap) were produced by using different concentrations of Lap via freeze-drying process for potential application in skin regeneration. The influence of Lap concentration on the scaffold properties was evaluated. The prepared scaffolds were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), porosity, swelling capacity, and mechanical analyses. The results revealed that the scaffolds exhibited a porous architecture, besides the increase in the clay content, leads to an increase in the porosity, an improvement of mechanical strength, and a decrease of swelling capacity. In vitro tests were also carried out to evaluate the biocompatibility of the materials, such as bioadhesion, antibacterial activity, viability, and cell adhesion. Viability and cell adhesion demonstrated that all scaffolds were not cytotoxic and the fibroblast cells readily attached on the surface of the scaffolds. Thereby, the results suggested that the nanocomposite scaffolds are biomaterials potentially useful as wound dressings.


Assuntos
Bandagens , Quitosana/química , Fibroblastos/metabolismo , Teste de Materiais , Nanocompostos/química , Silicatos/química , Alicerces Teciduais/química , Animais , Células 3T3 BALB , Sobrevivência Celular , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...