Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Pharmacol ; 97(4): 482-487, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26032639

RESUMO

Schizophrenia is a chronic disease that has been hypothesized to be linked to neurodevelopmental abnormalities. Schizophrenia patients exhibit impairments in basic sensory processing including sensory gating deficits in P50 and mismatch negativity (MMN). Neuronal nicotinic acetylcholine receptor (nAChR) agonists have been reported to attenuate these deficits. Gestational exposure of rats to methylazoxymethanol acetate (MAM) at embryonic day 17 leads to developmental disruption of the limbic-cortical system. MAM exposed offspring show neuropathological and behavioral changes that have similarities with those seen in schizophrenia. In this study, we aimed to assess whether N40 auditory sensory gating (the rodent form of P50 gating) and MMN deficits as measures of auditory evoked potential (AEP) electroencephalography (EEG) are present in MAM rats and whether nAChR agonists could attend the deficit. E17 male MAM and sham rats were implanted with cortical electrodes at 2 months of age. EEG recordings evaluating N40 gating and MMN paradigms were done comparing effects of vehicle (saline), nicotine and the α7 agonist ABT-107. Deficits were seen for MAM rats compared to sham animals in both N40 auditory sensory gating and MMN AEP recordings. There was a strong trend for N40 deficits to be attenuated by both nicotine (0.16mg/kg i.p. base) and ABT-107 (1.0mg/kg i.p. base). MMN deficits were significantly attenuated by ABT-107 but not by nicotine. These data support the MAM model as a useful tool for translating pharmacodynamic effects in clinical medicine studies of novel therapeutic treatments for schizophrenia.


Assuntos
Potenciais Evocados Auditivos/fisiologia , Indóis/farmacologia , Acetato de Metilazoximetanol/toxicidade , Nicotina/farmacologia , Quinuclidinas/farmacologia , Esquizofrenia/induzido quimicamente , Esquizofrenia/tratamento farmacológico , Animais , Comportamento Animal/efeitos dos fármacos , Potenciais Evocados Auditivos/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica , Masculino , Transtornos do Neurodesenvolvimento/induzido quimicamente , Gravidez , Ratos , Ratos Sprague-Dawley , Esquizofrenia/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Receptor Nicotínico de Acetilcolina alfa7/genética , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
2.
J Neurosci ; 31(14): 5406-13, 2011 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-21471376

RESUMO

Mounting evidence suggests excessive glucocorticoid activity may contribute to Alzheimer's disease (AD) and age-associated memory impairment. 11ß-hydroxysteroid dehydrogenase type-1 (HSD1) regulates conversion of glucocorticoids from inactive to active forms. HSD1 knock-out mice have improved cognition, and the nonselective inhibitor carbenoxolone improved verbal memory in elderly men. Together, these data suggest that HSD1 inhibition may be a potential therapy for cognitive deficits, such as those associated with AD. To investigate this, we characterized two novel and selective HSD1 inhibitors, A-918446 and A-801195. Learning, memory consolidation, and recall were evaluated in mouse 24 h inhibitory avoidance. Inhibition of brain cortisol production and phosphorylation of cAMP response element-binding protein (CREB), a transcription factor involved in cognition, were also examined. Rats were tested in a short-term memory model, social recognition, and in a separate group cortical and hippocampal acetylcholine release was measured via in vivo microdialysis. Acute treatment with A-801195 (10-30 mg/kg) or A-918446 (3-30 mg/kg) inhibited cortisol production in the ex vivo assay by ∼ 35-90%. Acute treatment with A-918446 improved memory consolidation and recall in inhibitory avoidance and increased CREB phosphorylation in the cingulate cortex. Acute treatment with A-801195 significantly improved short-term memory in rat social recognition that was not likely due to alterations of the cholinergic system, as acetylcholine release was not increased in a separate set of rats. These studies suggest that selective HSD1 inhibitors work through a novel, noncholinergic mechanism to facilitate cognitive processing.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , Memória/fisiologia , Análise de Variância , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Encéfalo/enzimologia , Proteína de Ligação a CREB/metabolismo , Inibidores da Colinesterase/farmacologia , Donepezila , Relação Dose-Resposta a Droga , Eletrochoque/efeitos adversos , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Hidrocortisona/metabolismo , Técnicas In Vitro , Indanos/farmacologia , Masculino , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Microdiálise/métodos , Modelos Animais , Testes Neuropsicológicos , Fosforilação/efeitos dos fármacos , Piperidinas/farmacologia , Ensaio Radioligante , Ratos , Ratos Sprague-Dawley , Comportamento Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...