Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brachytherapy ; 20(1): 265-271, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33039331

RESUMO

PURPOSE: he purpose of this study was to study the dosimetric characterization of sonolucent material "TPX" to be used toward gynecologic high-dose-rate brachytherapy treatments using ultrasound-compatible cylinders in non-model-based dose calculation workflows. METHODS: Monte Carlo simulations were performed using EGSnrc application egs_brachy in cylinders of polymethylpentene (TPX) plastic, water, and PMMA. Simulations were performed of five 192Ir sources placed longitudinally in ∼3.7 cm diameter, 5.0 cm length cylinders (matching physical cylinders used in film measurements). TPX and PMMA dose distributions and percentage depth dose curves were compared relative to water. Film measurements were performed to validate egs_brachy simulations. TPX and PMMA cylinders were placed in a water tank using 3D-printed supports to position film radially and touching the surface of the cylinders. The same five 192Ir dwell positions were delivered as simulated in egs_brachy. RESULTS: The egs_brachy and film percentage depth doses agreed within film uncertainties. The egs_brachy relative dose difference between TPX and water was (0.74 ± 0.09)% and between PMMA and water was (-0.79 ± 0.09)% over the dose scoring phantom. Dose differences for TPX and PMMA relative to water were less than ± 1% within 5 cm of the cylinder surface. CONCLUSIONS: In a solid sonolucent sheath of TPX, the dosimetric differences are comparable with PMMA and other applicator materials in clinical use. No additional uncertainty to dose calculation is introduced when treating through TPX cylinders compared with current applicator materials, and therefore, it is acceptable to perform gynecologic brachytherapy treatments with a sonolucent sheath inserted during radiation delivery.


Assuntos
Braquiterapia , Radioisótopos de Irídio , Braquiterapia/métodos , Feminino , Dosimetria Fotográfica , Humanos , Masculino , Método de Monte Carlo , Imagens de Fantasmas , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
2.
Med Phys ; 47(10): 4956-4970, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32767411

RESUMO

PURPOSE: Many interventional procedures require the precise placement of needles or therapy applicators (tools) to correctly achieve planned targets for optimal diagnosis or treatment of cancer, typically leveraging the temporal resolution of ultrasound (US) to provide real-time feedback. Identifying tools in two-dimensional (2D) images can often be time-consuming with the precise position difficult to distinguish. We have developed and implemented a deep learning method to segment tools in 2D US images in near real-time for multiple anatomical sites, despite the widely varying appearances across interventional applications. METHODS: A U-Net architecture with a Dice similarity coefficient (DSC) loss function was used to perform segmentation on input images resized to 256 × 256 pixels. The U-Net was modified by adding 50% dropouts and the use of transpose convolutions in the decoder section of the network. The proposed approach was trained with 917 images and manual segmentations from prostate/gynecologic brachytherapy, liver ablation, and kidney biopsy/ablation procedures, as well as phantom experiments. Real-time data augmentation was applied to improve generalizability and doubled the dataset for each epoch. Postprocessing to identify the tool tip and trajectory was performed using two different approaches, comparing the largest island with a linear fit to random sample consensus (RANSAC) fitting. RESULTS: Comparing predictions from 315 unseen test images to manual segmentations, the overall median [first quartile, third quartile] tip error, angular error, and DSC were 3.5 [1.3, 13.5] mm, 0.8 [0.3, 1.7]°, and 73.3 [56.2, 82.3]%, respectively, following RANSAC postprocessing. The predictions with the lowest median tip and angular errors were observed in the gynecologic images (median tip error: 0.3 mm; median angular error: 0.4°) with the highest errors in the kidney images (median tip error: 10.1 mm; median angular error: 2.9°). The performance on the kidney images was likely due to a reduction in acoustic signal associated with oblique insertions relative to the US probe and the increased number of anatomical interfaces with similar echogenicity. Unprocessed segmentations were performed with a mean time of approximately 50 ms per image. CONCLUSIONS: We have demonstrated that our proposed approach can accurately segment tools in 2D US images from multiple anatomical locations and a variety of clinical interventional procedures in near real-time, providing the potential to improve image guidance during a broad range of diagnostic and therapeutic cancer interventions.


Assuntos
Aprendizado Profundo , Feminino , Fígado/diagnóstico por imagem , Masculino , Agulhas , Imagens de Fantasmas , Ultrassonografia
3.
Med Phys ; 46(6): 2646-2658, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30994191

RESUMO

PURPOSE: Minimally invasive procedures, such as microwave ablation, are becoming first-line treatment options for early-stage liver cancer due to lower complication rates and shorter recovery times than conventional surgical techniques. Although these procedures are promising, one reason preventing widespread adoption is inadequate local tumor ablation leading to observations of higher local cancer recurrence compared to conventional procedures. Poor ablation coverage has been associated with two-dimensional (2D) ultrasound (US) guidance of the therapy needle applicators and has stimulated investigation into the use of three-dimensional (3D) US imaging for these procedures. We have developed a supervised 3D US needle applicator segmentation algorithm using a single user input to augment the addition of 3D US to the current focal liver tumor ablation workflow with the goals of identifying and improving needle applicator localization efficiency. METHODS: The algorithm is initialized by creating a spherical search space of line segments around a manually chosen seed point that is selected by a user on the needle applicator visualized in a 3D US image. The most probable trajectory is chosen by maximizing the count and intensity of threshold voxels along a line segment and is filtered using the Otsu method to determine the tip location. Homogeneous tissue mimicking phantom images containing needle applicators were used to optimize the parameters of the algorithm prior to a four-user investigation on retrospective 3D US images of patients who underwent microwave ablation for liver cancer. Trajectory, axis localization, and tip errors were computed based on comparisons to manual segmentations in 3D US images. RESULTS: Segmentation of needle applicators in ten phantom 3D US images was optimized to median (Q1, Q3) trajectory, axis, and tip errors of 2.1 (1.1, 3.6)°, 1.3 (0.8, 2.1) mm, and 1.3 (0.7, 2.5) mm, respectively, with a mean ± SD segmentation computation time of 0.246 ± 0.007 s. Use of the segmentation method with a 16 in vivo 3D US patient dataset resulted in median (Q1, Q3) trajectory, axis, and tip errors of 4.5 (2.4, 5.2)°, 1.9 (1.7, 2.1) mm, and 5.1 (2.2, 5.9) mm based on all users. CONCLUSIONS: Segmentation of needle applicators in 3D US images during minimally invasive liver cancer therapeutic procedures could provide a utility that enables enhanced needle applicator guidance, placement verification, and improved clinical workflow. A semi-automated 3D US needle applicator segmentation algorithm used in vivo demonstrated localization of the visualized trajectory and tip with less than 5° and 5.2 mm errors, respectively, in less than 0.31 s. This offers the ability to assess and adjust needle applicator placements intraoperatively to potentially decrease the observed liver cancer recurrence rates associated with current ablation procedures. Although optimized for deep and oblique angle needle applicator insertions, this proposed workflow has the potential to be altered for a variety of image-guided minimally invasive procedures to improve localization and verification of therapy needle applicators intraoperatively.


Assuntos
Técnicas de Ablação/instrumentação , Fígado/diagnóstico por imagem , Fígado/cirurgia , Agulhas , Cirurgia Assistida por Computador/instrumentação , Humanos , Imagens de Fantasmas , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...