Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Plant Microbe Interact ; 33(4): 693-703, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31876224

RESUMO

ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) and PHYTOALEXIN DEFICIENT4 (PAD4) are sequence-related lipase-like proteins that function as a complex to regulate defense responses in Arabidopsis by both salicylic acid-dependent and independent pathways. Here, we describe a gain-of-function mutation in PAD4 (S135F) that enhances resistance and cell death in response to infection by the powdery mildew pathogen Golovinomyces cichoracearum. The mutant PAD4 protein accumulates to wild-type levels in Arabidopsis cells, thus these phenotypes are unlikely to be due to PAD4 over accumulation. The phenotypes are similar to loss-of-function mutations in the protein kinase EDR1 (Enhanced Disease Resistance1), and previous work has shown that loss of PAD4 or EDS1 suppresses edr1-mediated phenotypes, placing these proteins downstream of EDR1. Here, we show that EDR1 directly associates with EDS1 and PAD4 and inhibits their interaction in yeast and plant cells. We propose a model whereby EDR1 negatively regulates defense responses by interfering with the heteromeric association of EDS1 and PAD4. Our data indicate that the S135F mutation likely alters an EDS1-independent function of PAD4, potentially shedding light on a yet-unknown PAD4 signaling function.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Hidrolases de Éster Carboxílico , Morte Celular , Proteínas de Ligação a DNA , Resistência à Doença , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ascomicetos/fisiologia , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Morte Celular/genética , Proteínas de Ligação a DNA/metabolismo , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Mutação , Ácido Salicílico/metabolismo
2.
Plant Cell ; 31(11): 2664-2681, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31727786

RESUMO

The Pseudomonas syringae effector protein AvrRpm1 activates the Arabidopsis (Arabidopsis thaliana) intracellular innate immune receptor protein RESISTANCE TO PSEUDOMONAS MACULICOLA1 (RPM1) via modification of a second Arabidopsis protein, RPM1-INTERACTING PROTEIN4 (AtRIN4). Prior work has shown that AvrRpm1 induces phosphorylation of AtRIN4, but homology modeling indicated that AvrRpm1 may be an ADP-ribosyl transferase. Here, we show that AvrRpm1 induces ADP-ribosylation of RIN4 proteins from both Arabidopsis and soybean (Glycine max) within two highly conserved nitrate-induced (NOI) domains. It also ADP ribosylates at least 10 additional Arabidopsis NOI domain-containing proteins. The ADP-ribosylation activity of AvrRpm1 is required for subsequent phosphorylation on Thr-166 of AtRIN4, an event that is necessary and sufficient for RPM1 activation. We also show that the C-terminal NOI domain of AtRIN4 interacts with the exocyst subunits EXO70B1, EXO70E1, EXO70E2, and EXO70F1. Mutation of either EXO70B1 or EXO70E2 inhibited secretion of callose induced by the bacterial flagellin-derived peptide flg22. Substitution of RIN4 Thr-166 with Asp enhanced the association of AtRIN4 with EXO70E2, which we posit inhibits its callose deposition function. Collectively, these data indicate that AvrRpm1 ADP-ribosyl transferase activity contributes to virulence by promoting phosphorylation of RIN4 Thr-166, which inhibits the secretion of defense compounds by promoting the inhibitory association of RIN4 with EXO70 proteins.plantcell;31/11/2664/FX1F1fx1.


Assuntos
ADP Ribose Transferases/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Soja/metabolismo , Arabidopsis , Proteínas de Bactérias/genética , Mutagênese Sítio-Dirigida , Mutação , Fosforilação , Plantas Geneticamente Modificadas , Pseudomonas syringae/patogenicidade , Glycine max , Nicotiana/genética , Virulência
3.
Plant Cell ; 2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-31548257

RESUMO

The Pseudomonas syringae effector protein AvrRpm1 activates the Arabidopsis intracellular innate immune receptor protein RPM1 via modification of a second Arabidopsis protein, RIN4. Prior work has shown that AvrRpm1 induces phosphorylation of AtRIN4, but homology modeling indicated that AvrRpm1 may be an ADP-ribosyl transferase. Here we show that AvrRpm1 induces ADP-ribosylation of RIN4 proteins from both Arabidopsis and soybean within two highly conserved nitrate-induced (NOI) domains. It also ADP-ribosylates at least ten additional Arabidopsis NOI domain-containing proteins. The ADP-ribosylation activity of AvrRpm1 is required for subsequent phosphorylation on threonine 166 of Arabidopsis RIN4, an event that is necessary and sufficient for RPM1 activation. We also show that the C-terminal NOI domain of AtRIN4 interacts with the exocyst subunits EXO70B1, EXO70E1, EXO70E2 and EXO70F1. Mutation of either EXO70B1 or EXO70E2 inhibited secretion of callose induced by the bacterial flagellin-derived peptide flg22. Substitution of RIN4 threonine 166 with aspartate enhanced the association of AtRIN4 with EXO70E2, which we posit inhibits its callose deposition function. Collectively, these data indicate that AvrRpm1 ADP-ribosyl transferase activity contributes to virulence by promoting phosphorylation of RIN4 threonine 166, which inhibits the secretion of defense compounds by promoting the inhibitory association of RIN4 with EXO70 proteins.

4.
Plant Physiol ; 166(1): 235-51, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25034017

RESUMO

In Arabidopsis (Arabidopsis thaliana), the Pseudomonas syringae effector proteins AvrB and AvrRpm1 are both detected by the RESISTANCE TO PSEUDOMONAS MACULICOLA1 (RPM1) disease resistance (R) protein. By contrast, soybean (Glycine max) can distinguish between these effectors, with AvrB and AvrRpm1 being detected by the Resistance to Pseudomonas glycinea 1b (Rpg1b) and Rpg1r R proteins, respectively. We have been using these genes to investigate the evolution of R gene specificity and have previously identified RPM1 and Rpg1b. Here, we report the cloning of Rpg1r, which, like RPM1 and Rpg1b, encodes a coiled-coil (CC)-nucleotide-binding (NB)-leucine-rich repeat (LRR) protein. As previously found for Rpg1b, we determined that Rpg1r is not orthologous with RPM1, indicating that the ability to detect both AvrB and AvrRpm1 evolved independently in soybean and Arabidopsis. The tightly linked soybean Rpg1b and Rpg1r genes share a close evolutionary relationship, with Rpg1b containing a recombination event that combined a NB domain closely related to Rpg1r with CC and LRR domains from a more distantly related CC-NB-LRR gene. Using structural modeling, we mapped polymorphisms between Rpg1b and Rpg1r onto the predicted tertiary structure of Rpg1b, which revealed highly polymorphic surfaces within both the CC and LRR domains. Assessment of chimeras between Rpg1b and Rpg1r using a transient expression system revealed that AvrB versus AvrRpm1 specificity is determined by the C-terminal portion of the LRR domain. The P. syringae effector AvrRpt2, which targets RPM1 INTERACTOR4 (RIN4) proteins in both Arabidopsis and soybean, partially blocked recognition of both AvrB and AvrRpm1 in soybean, suggesting that both Rpg1b and Rpg1r may detect these effectors via modification of a RIN4 homolog.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Bactérias/imunologia , Evolução Molecular , Glycine max/genética , Sequência de Aminoácidos , Arabidopsis/imunologia , Clonagem Molecular , Sequência Conservada , Mapeamento de Sequências Contíguas , Teste de Complementação Genética , Dados de Sequência Molecular , Imunidade Vegetal/genética , Polimorfismo Genético , Estrutura Terciária de Proteína , Recombinação Genética , Glycine max/imunologia
5.
Mol Plant Pathol ; 12(8): 746-58, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21726375

RESUMO

The enhanced disease resistance 1 (edr1) mutant of Arabidopsis confers enhanced resistance to bacterial and fungal pathogens. To better understand how edr1-mediated resistance occurs, we performed transcriptome analyses on wild-type and edr1 plants inoculated with the fungal pathogen Golovinomyces cichoracearum (powdery mildew). The expression of many known and putative defence-associated genes was more rapidly induced, and to higher levels, in edr1 plants relative to the wild-type. Many of the genes with elevated expression encoded WRKY transcription factors and there was enrichment for their binding sites in promoters of the genes upregulated in edr1. Confocal microscopy of transiently expressed EDR1 protein showed that a significant fraction of EDR1 was localized to the nucleus, suggesting that EDR1 could potentially interact with transcription factors in the nucleus. Analysis of gene ontology annotations revealed that genes associated with the endomembrane system, defence, reactive oxygen species (ROS) production and protein kinases were induced early in the edr1 mutant, and that elevated expression of the endomembrane system, defence and ROS-related genes was maintained for at least 4 days after infection.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Ascomicetos/patogenicidade , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/microbiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Mol Plant Microbe Interact ; 23(5): 578-84, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20367466

RESUMO

Loss-of-function mutations in the EDR1 gene of Arabidopsis confer enhanced resistance to Golovinomyces cichoracearum (powdery mildew). Disease resistance mediated by the edr1 mutation is dependent on an intact salicylic acid (SA) signaling pathway, but edr1 mutant plants do not constitutively express the SA-inducible gene PR-1 and are not dwarfed. To identify other components of the EDR1 signaling network, we screened for mutations that enhanced the edr1 mutant phenotype. Here, we describe an enhancer of edr1 mutant, eed3, which forms spontaneous lesions in the absence of pathogen infection, constitutively expresses both SA- and methyl jasmonate (JA)-inducible defense genes, and is dwarfed. Positional cloning of eed3 revealed that the mutation causes a premature stop codon in GLUCAN SYNTHASE-LIKE 5 (GSL5, also known as POWDERY MILDEW RESISTANT 4), which encodes a callose synthase required for pathogen-induced callose production. Significantly, gsl5 single mutants do not constitutively express PR-1 or AtERF1 (a JA-inducible gene) and are not dwarfed. Thus, loss of both EDR1 and GSL5 function has a synergistic effect. Our data suggest that EDR1 and GSL5 negatively regulate SA and JA production or signaling by independent mechanisms and that negative regulation of defense signaling by GSL5 may be independent of callose production.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/imunologia , Glucosiltransferases/metabolismo , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Ascomicetos/efeitos dos fármacos , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/fisiologia , Clonagem Molecular , Ciclopentanos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Glucosiltransferases/genética , Mutação/genética , Oxilipinas/farmacologia , Fenótipo , Ácido Salicílico/farmacologia
7.
Plant Physiol ; 148(3): 1510-22, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18815384

RESUMO

Loss-of-function mutations in the Arabidopsis (Arabidopsis thaliana) ENHANCED DISEASE RESISTANCE1 (EDR1) gene confer enhanced resistance to infection by powdery mildew (Golovinomyces cichoracearum). EDR1 encodes a protein kinase, but its substrates and the pathways regulated by EDR1 are unknown. To identify components of the EDR1 signal transduction pathway(s), we conducted a forward genetic screen for mutations that suppressed edr1-mediated disease resistance. Genetic mapping and cloning of one of these suppressor mutations revealed a recessive missense mutation in the KEEP ON GOING gene (KEG; At5g13530), which we designated keg-4. KEG encodes a multidomain protein that includes a RING E3 ligase domain, a kinase domain, ankyrin repeats, and HERC2-like repeats. The KEG protein has previously been shown to have ubiquitin ligase activity and to negatively regulate protein levels of the transcription factor ABCISIC ACID INSENSITIVE5. KEG mRNA levels were found to be 3-fold higher in edr1 mutant plants compared to wild type. Loss-of-function mutations in KEG are seedling lethal and are hypersensitive to glucose and abscisic acid (ABA). The keg-4 mutation, in contrast, conferred resistance to 6% glucose and suppressed edr1-mediated hypersensitivity to ABA, suggesting that the keg-4 mutation suppresses ABA signaling by altering KEG function. Several ABA-responsive genes were found to be further up-regulated in the edr1 mutant following ABA treatment, and this up-regulation was suppressed by the keg-4 mutation. We conclude that edr1-mediated resistance to powdery mildew is mediated, in part, by enhanced ABA signaling.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/microbiologia , Ascomicetos/patogenicidade , Proteínas de Ligação a DNA/genética , Mutação de Sentido Incorreto , Transdução de Sinais , Ubiquitina-Proteína Ligases/genética , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/metabolismo , Genes de Plantas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...