Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochimie ; 94(7): 1474-80, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22738729

RESUMO

Despite being composed by a single-stranded, circular, non-protein-coding RNA of just 246-401 nucleotides (nt), viroids can incite in their host plants symptoms similar to those caused by DNA and RNA viruses, which have genomes at least 20-fold bigger and encode proteins. On the other hand, certain non-protein-coding plant satellite RNAs display structural similarities with viroids but for replication and transmission they need to parasitize specific helper viruses (modifying concomitantly the symptoms they induce). While phenotypic alterations accompanying infection by viruses may partly result from expressing the proteins they code for, how the non-protein-coding viroids (and satellite RNAs) cause disease remains a conundrum. Initial ideas on viroid pathogenesis focused on a direct interaction of the genomic RNA with host proteins resulting in their malfunction. With the advent of RNA silencing, it was alternatively proposed that symptoms could be produced by viroid-derived small RNAs (vd-sRNAs) -generated by the host defensive machinery- targeting specific host mRNA or DNA sequences for post-transcriptional or transcriptional gene silencing, respectively, a hypothesis that could also explain pathogenesis of non-protein-coding satellite RNAs. Evidence sustaining this view has been circumstantial, but recent data provide support for it in two cases: i) the yellow symptoms associated with a specific satellite RNA result from a 22-nt small RNA (derived from the 24-nt fragment of the satellite genome harboring the pathogenic determinant), which is complementary to a segment of the mRNA of the chlorophyll biosynthetic gene CHLI and targets it for cleavage by the RNA silencing machinery, and ii) two 21-nt vd-sRNAS containing the pathogenic determinant of the albino phenotype induced by a chloroplast-replicating viroid target for cleavage the mRNA coding for the chloroplastic heat-shock protein 90 via RNA silencing too. This evidence, which is compelling for the satellite RNA, does not exclude alternative mechanisms.


Assuntos
Viroides/genética , Viroides/patogenicidade , Viroses/virologia , Interferência de RNA , RNA Satélite/genética , RNA Viral/genética
2.
Plant J ; 70(6): 991-1003, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22332758

RESUMO

How viroids, tiny non-protein-coding RNAs (~250-400 nt), incite disease is unclear. One hypothesis is that viroid-derived small RNAs (vd-sRNAs; 21-24 nt) resulting from the host defensive response, via RNA silencing, may target for cleavage cell mRNAs and trigger a signal cascade, eventually leading to symptoms. Peach latent mosaic viroid (PLMVd), a chloroplast-replicating viroid, is particularly appropriate to tackle this question because it induces an albinism (peach calico, PC) strictly associated with variants containing a specific 12-14-nt hairpin insertion. By dissecting albino and green leaf sectors of Prunus persica (peach) seedlings inoculated with PLMVd natural and artificial variants, and cloning their progeny, we have established that the hairpin insertion sequence is involved in PC. Furthermore, using deep sequencing, semi-quantitative RT-PCR and RNA ligase-mediated rapid amplification of cDNA ends (RACE), we have determined that two PLMVd-sRNAs containing the PC-associated insertion (PC-sRNA8a and PC-sRNA8b) target for cleavage the mRNA encoding the chloroplastic heat-shock protein 90 (cHSP90), thus implicating RNA silencing in the modulation of host gene expression by a viroid. Chloroplast malformations previously reported in PC-expressing tissues are consistent with the downregulation of cHSP90, which participates in chloroplast biogenesis and plastid-to-nucleus signal transduction in Arabidopsis. Besides PC-sRNA8a and PC-sRNA8b, both deriving from the less-abundant PLMVd (-) strand, we have identified other PLMVd-sRNAs potentially targeting peach mRNAs. These results also suggest that sRNAs derived from other PLMVd regions may downregulate additional peach genes, ultimately resulting in other symptoms or in a more favorable host environment for viroid infection.


Assuntos
Cloroplastos/virologia , Interferência de RNA , Estabilidade de RNA , RNA Mensageiro/metabolismo , RNA Viral/genética , Viroides/genética , Sequência de Bases , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Mutagênese Insercional , Conformação de Ácido Nucleico , Doenças das Plantas/genética , Doenças das Plantas/virologia , Prunus/genética , Prunus/virologia , RNA Mensageiro/genética , Análise de Sequência de RNA
3.
Plant Cell ; 19(11): 3610-26, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18055612

RESUMO

Peach latent mosaic viroid (PLMVd) is a chloroplast-replicating RNA that propagates in its natural host, peach (Prunus persica), as a complex mixture of variants, some of which are endowed with specific structural and pathogenic properties. This is the case of variant PC-C40, with an insertion of 12 to 13 nucleotides that folds into a hairpin capped by a U-rich loop, which is responsible for an albino-variegated phenotype known as peach calico (PC). We have applied a combination of ultrastructural, biochemical, and molecular approaches to dissect the pathogenic effects of PC-C40. Albino sectors of leaves infected with variant PC-C40 presented palisade cells that did not completely differentiate into a columnar layer and altered plastids with irregular shape and size and with rudimentary thylakoids, resembling proplastids. Furthermore, impaired processing and accumulation of plastid rRNAs and, consequently, of the plastid translation machinery was observed in the albino sectors of leaves infected with variant PC-C40 but not in the adjacent green areas or in leaves infected by mosaic-inducing or latent variants (including PC-C40Delta, in which the 12- to 13-nucleotide insertion was deleted). Protein gel blot and RT-PCR analyses showed that the altered plastids support the import of nucleus-encoded proteins, including a chloroplast RNA polymerase, the transcripts of which were detected. RNA gel blot and in situ hybridizations revealed that PLMVd replicates in the albino leaf sectors and that it can invade the shoot apical meristem and induce alterations in proplastids, bypassing the RNA surveillance system that restricts the entry of a nucleus-replicating viroid and most RNA viruses. Therefore, a non-protein-coding RNA with a specific structural motif can interfere with an early step of the chloroplast developmental program, leading ultimately to an albino-variegated phenotype resembling that of certain variegated mutants in which plastid rRNA maturation is also impaired. Our results highlight the potential of viroids for further dissection of RNA trafficking and pathogenesis in plants.


Assuntos
Cloroplastos/virologia , Conformação de Ácido Nucleico , Prunus/crescimento & desenvolvimento , Prunus/virologia , RNA Viral/química , Viroides/química , Sequência de Bases , Cloroplastos/genética , Cloroplastos/ultraestrutura , Regulação da Expressão Gênica de Plantas , Meristema/citologia , Meristema/virologia , Modelos Biológicos , Dados de Sequência Molecular , Mutação , Fenótipo , Doenças das Plantas/virologia , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/ultraestrutura , Folhas de Planta/virologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Vírus de Plantas/fisiologia , Biossíntese de Proteínas , Prunus/genética , Prunus/ultraestrutura , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Ribossômico/metabolismo , RNA Viral/genética , Plântula/citologia , Plântula/ultraestrutura , Plântula/virologia , Solubilidade , Transcrição Gênica , Viroides/genética , Replicação Viral
4.
J Gen Virol ; 87(Pt 1): 231-240, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16361436

RESUMO

Previous characterization of Peach latent mosaic viroid (PLMVd) variants from a single peach calico (PC) isolate showed that PC symptoms are induced by variants with a 12-13 nt insertion at a specific position and folding into a hairpin with a U-rich loop. Here, this study was extended to two other PC isolates. PLMVd variants with insertions similar to those reported previously (type 1), predominated in one isolate (PC-P2). The second (PC-P1), in addition to these variants, contained others with insertions in the same position and of the same size, but with the hairpin capped by a GA-rich loop (type 2). When symptomatic and non-symptomatic tissues from both isolates were used to inoculate GF-305 peach seedlings, they reproduced the phenotype of the inoculum source, indicating that variants differing in pathogenicity are unevenly distributed within single plants. Moreover, characterization of the progeny from inoculations with the PC-P1 source showed that variants with insertions of type 1 and 2 were predominant in the symptomatic and non-symptomatic seedlings, respectively, confirming the association between PC and variants with type 1 but not type 2 insertions. Inoculations with dimeric in vitro transcripts from PLMVd variants with type 1, type 2 and with a chimeric insertion showed that the variant with type 2 insertion was latent and established that the U-rich capping loop has a major role in PC, although the adjacent stem may also have some influence. Insertions can be acquired and lost during infection, suggesting that latent variants can evolve into pathogenic variants and vice versa.


Assuntos
Variação Genética , Vírus do Mosaico/patogenicidade , Doenças das Plantas/virologia , Prunus/virologia , Viroides/patogenicidade , Dados de Sequência Molecular , Vírus do Mosaico/genética , Folhas de Planta/virologia , Viroides/classificação , Viroides/genética , Latência Viral/genética
5.
Mol Plant Pathol ; 7(4): 209-21, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20507441

RESUMO

SUMMARY Taxonomy: Peach latent mosaic viroid (PLMVd) is the type species of the genus Pelamoviroid within the family Avsunviroidae of chloroplastic viroids with hammerhead ribozymes. Physical properties: A small circular RNA of 336-351 nt (differences in size result from the absence or presence of certain insertions) adopting a branched conformation stabilized by a pseudoknot between two kissing loops. This particular conformation is most likely responsible for the insolubility of PLMVd in highly saline conditions (in which other viroids adopting a rod-like conformation are soluble). Both polarity strands are able to form hammerhead structures and to self-cleave during replication as predicted by these ribozymes. Biological properties: Although most infections occur without conspicuous symptoms, certain PLMVd isolates induce leaf mosaics, blotches and in the most extreme cases albinism (peach calico, PC), flower streaking, delays in foliation, flowering and ripening, deformations and decolorations of fruits, which usually present cracked sutures and enlarged roundish stones, bud necrosis, stem pitting and premature ageing of the trees, which also adopt a characteristic growing pattern (open habit). The molecular determinant for PC has been mapped at a 12-14-nt insertion that folds into a hairpin capped by a U-rich loop present only in certain variants. PLMVd is horizontally transmitted by the propagation of infected buds and to a lesser extent by pruning tools and aphids, but not by pollen; the viroid is not vertically transmitted through seed. Interesting features: This provides a suitable system for studying how a minimal non-protein-coding catalytic RNA replicates (subverting a DNA-dependent RNA polymerase to transcribe an RNA template), moves, interferes with the metabolism of its host (inciting specific symptoms and a defensive RNA silencing response) and evolves following a quasi-species model characterized by a complex spectrum of variants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...