Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 42(5-7): 811-21, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11219707

RESUMO

Soot formation in a methane air turbulent jet diffusion flame is investigated numerically using a semi-empirical model. The temperature, density and species (the soot precursor C2H2) fields are calculated using detailed chemical kinetic mechanism based on the flamelet library approach. The influence of pressure on the soot formation and the behavior of the semi-empirical model in different flame situations are investigated. It is found that the flame shape and the flame temperature can be well predicted by the flamelet library approach. The calculated soot yield is mostly sensitive to the soot surface growth rate and the increase of pressure. The increase of pressure leads to the increase of soot surface growth rate and therefore to the increase of soot volume fraction. By adjusting a model constant in the soot surface growth rate, the soot emissions in both pressure p = 1 atm and p = 3 atm are properly simulated by the current semi-empirical soot model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...