Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 41(6): 111588, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36351382

RESUMO

Claudins are a family of transmembrane proteins expressed in epithelial tissues and are the major components of tight junctions (TJs), which define barrier properties in epithelia and maintain cell polarity. How claudins regulate the formation of TJs and which functions they exert outside of them is not entirely understood. Although the long and unstructured C-terminal tail is essential for regulation, it is unclear how it is involved in these functions beyond interacting with TJ-associated proteins such as TJ protein ZO-1 (TJP1). Here, we present an interactome study of the pan-claudin family in Madin-Darby canine kidney (MDCK)-C7 cells by combining two complementary mass spectrometry-based pull-down techniques creating an interaction landscape of the entire claudin family. The interaction partners of the claudins' C termini reveal their possible implications in localized biological processes in epithelial cells and their regulation by post-translational modifications (PTMs).


Assuntos
Claudinas , Junções Íntimas , Cães , Animais , Claudinas/metabolismo , Linhagem Celular , Junções Íntimas/metabolismo , Células Madin Darby de Rim Canino , Polaridade Celular
2.
Nat Commun ; 13(1): 1303, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35288557

RESUMO

Extravasation of monocytes into tissue and to the site of injury is a fundamental immunological process, which requires rapid responses via post translational modifications (PTM) of proteins. Protein arginine methyltransferase 7 (PRMT7) is an epigenetic factor that has the capacity to mono-methylate histones on arginine residues. Here we show that in chronic obstructive pulmonary disease (COPD) patients, PRMT7 expression is elevated in the lung tissue and localized to the macrophages. In mouse models of COPD, lung fibrosis and skin injury, reduced expression of PRMT7 associates with decreased recruitment of monocytes to the site of injury and hence less severe symptoms. Mechanistically, activation of NF-κB/RelA in monocytes induces PRMT7 transcription and consequential mono-methylation of histones at the regulatory elements of RAP1A, which leads to increased transcription of this gene that is responsible for adhesion and migration of monocytes. Persistent monocyte-derived macrophage accumulation leads to ALOX5 over-expression and accumulation of its metabolite LTB4, which triggers expression of ACSL4 a ferroptosis promoting gene in lung epithelial cells. Conclusively, inhibition of arginine mono-methylation might offer targeted intervention in monocyte-driven inflammatory conditions that lead to extensive tissue damage if left untreated.


Assuntos
Proteína-Arginina N-Metiltransferases , Doença Pulmonar Obstrutiva Crônica , Animais , Arginina/metabolismo , Histonas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Monócitos/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética
3.
Commun Biol ; 5(1): 49, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35027645

RESUMO

Parkinson's disease (PD) is the second-most prevalent neurodegenerative disorder, characterized by the loss of dopaminergic neurons (mDA) in the midbrain. The underlying mechanisms are only partly understood and there is no treatment to reverse PD progression. Here, we investigated the disease mechanism using mDA neurons differentiated from human induced pluripotent stem cells (hiPSCs) carrying the ILE368ASN mutation within the PINK1 gene, which is strongly associated with PD. Single-cell RNA sequencing (RNAseq) and gene expression analysis of a PINK1-ILE368ASN and a control cell line identified genes differentially expressed during mDA neuron differentiation. Network analysis revealed that these genes form a core network, members of which interact with all known 19 protein-coding Parkinson's disease-associated genes. This core network encompasses key PD-associated pathways, including ubiquitination, mitochondrial function, protein processing, RNA metabolism, and vesicular transport. Proteomics analysis showed a consistent alteration in proteins of dopamine metabolism, indicating a defect of dopaminergic metabolism in PINK1-ILE368ASN neurons. Our findings suggest the existence of a network onto which pathways associated with PD pathology converge, and offers an inclusive interpretation of the phenotypic heterogeneity of PD.


Assuntos
Diferenciação Celular/genética , Células-Tronco Pluripotentes Induzidas/fisiologia , Mutação , Doença de Parkinson/fisiopatologia , Proteínas Quinases/genética , Transcriptoma , Perfilação da Expressão Gênica , Humanos , Neurogênese , Doença de Parkinson/genética , Análise de Sequência de RNA , Análise de Célula Única
4.
Nat Commun ; 11(1): 6366, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33311477

RESUMO

The infiltrative nature of Glioblastoma (GBM), the most aggressive primary brain tumor, critically prevents complete surgical resection and masks tumor cells behind the blood brain barrier reducing the efficacy of systemic treatment. Here, we use a genome-wide interference screen to determine invasion-essential genes and identify the AN1/A20 zinc finger domain containing protein 3 (ZFAND3) as a crucial driver of GBM invasion. Using patient-derived cellular models, we show that loss of ZFAND3 hampers the invasive capacity of GBM, whereas ZFAND3 overexpression increases motility in cells that were initially not invasive. At the mechanistic level, we find that ZFAND3 activity requires nuclear localization and integral zinc-finger domains. Our findings indicate that ZFAND3 acts within a nuclear protein complex to activate gene transcription and regulates the promoter of invasion-related genes such as COL6A2, FN1, and NRCAM. Further investigation in ZFAND3 function in GBM and other invasive cancers is warranted.


Assuntos
Neoplasias Encefálicas/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Glioblastoma/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Neoplasias Encefálicas/patologia , Moléculas de Adesão Celular/genética , Linhagem Celular Tumoral , Movimento Celular , Colágeno Tipo VI/genética , Fibronectinas/genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Xenoenxertos , Humanos , Camundongos , Invasividade Neoplásica/genética , Domínios Proteicos , Transcriptoma
5.
Sci Rep ; 10(1): 2896, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-32076073

RESUMO

Myocardial infarction (MI) is a leading cause of death worldwide. Reperfusion is considered as an optimal therapy following cardiac ischemia. However, the promotion of a rapid elevation of O2 levels in ischemic cells produces high amounts of reactive oxygen species (ROS) leading to myocardial tissue injury. This phenomenon is called ischemia reperfusion injury (IRI). We aimed at identifying new and effective compounds to treat MI and minimize IRI. We previously studied heart regeneration following myocardial injury in zebrafish and described each step of the regeneration process, from the day of injury until complete recovery, in terms of transcriptional responses. Here, we mined the data and performed a deep in silico analysis to identify drugs highly likely to induce cardiac regeneration. Fisetin was identified as the top candidate. We validated its effects in an in vitro model of MI/IRI in mammalian cardiac cells. Fisetin enhances viability of rat cardiomyocytes following hypoxia/starvation - reoxygenation. It inhibits apoptosis, decreases ROS generation and caspase activation and protects from DNA damage. Interestingly, fisetin also activates genes involved in cell proliferation. Fisetin is thus a highly promising candidate drug with clinical potential to protect from ischemic damage following MI and to overcome IRI.


Assuntos
Caspases/metabolismo , Citoproteção , Flavonoides/farmacologia , Miocárdio/enzimologia , Miocárdio/patologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Animais Recém-Nascidos , Morte Celular/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Citoproteção/efeitos dos fármacos , Dano ao DNA , Avaliação Pré-Clínica de Medicamentos , Ativação Enzimática/efeitos dos fármacos , Flavonóis , Regulação da Expressão Gênica/efeitos dos fármacos , Modelos Biológicos , Miócitos Cardíacos/efeitos dos fármacos , Oxigênio , Ratos
6.
Gut ; 66(10): 1748-1760, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-27371534

RESUMO

OBJECTIVE: Epidemiological and clinical data indicate that patients suffering from IBD with long-standing colitis display a higher risk to develop colorectal high-grade dysplasia. Whereas carcinoma invasion and metastasis rely on basement membrane (BM) disruption, experimental evidence is lacking regarding the potential contribution of epithelial cell/BM anchorage on inflammation onset and subsequent neoplastic transformation of inflammatory lesions. Herein, we analyse the role of the α6ß4 integrin receptor found in hemidesmosomes that attach intestinal epithelial cells (IECs) to the laminin-containing BM. DESIGN: We developed new mouse models inducing IEC-specific ablation of α6 integrin either during development (α6ΔIEC) or in adults (α6ΔIEC-TAM). RESULTS: Strikingly, all α6ΔIEC mutant mice spontaneously developed long-standing colitis, which degenerated overtime into infiltrating adenocarcinoma. The sequence of events leading to disease onset entails hemidesmosome disruption, BM detachment, IL-18 overproduction by IECs, hyperplasia and enhanced intestinal permeability. Likewise, IEC-specific ablation of α6 integrin induced in adult mice (α6ΔIEC-TAM) resulted in fully penetrant colitis and tumour progression. Whereas broad-spectrum antibiotic treatment lowered tissue pathology and IL-1ß secretion from infiltrating myeloid cells, it failed to reduce Th1 and Th17 response. Interestingly, while the initial intestinal inflammation occurred independently of the adaptive immune system, tumourigenesis required B and T lymphocyte activation. CONCLUSIONS: We provide for the first time evidence that loss of IECs/BM interactions triggered by hemidesmosome disruption initiates the development of inflammatory lesions that progress into high-grade dysplasia and carcinoma. Colorectal neoplasia in our mouse models resemble that seen in patients with IBD, making them highly attractive for discovering more efficient therapies.


Assuntos
Adenocarcinoma/fisiopatologia , Colite/fisiopatologia , Neoplasias Colorretais/fisiopatologia , Citocinas/metabolismo , Hemidesmossomos/fisiologia , Integrina alfa6/genética , Integrina alfa6beta4/metabolismo , Mucosa Intestinal/metabolismo , Imunidade Adaptativa , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Animais , Linfócitos B , Membrana Basal/fisiopatologia , Caspase 1/metabolismo , Colite/genética , Colite/metabolismo , Colite/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Citocinas/genética , Células Epiteliais/metabolismo , Hemidesmossomos/genética , Homeostase/genética , Mucosa Intestinal/patologia , Mucosa Intestinal/fisiopatologia , Queratina-18/metabolismo , Queratina-8/metabolismo , Ativação Linfocitária , Camundongos , Muco/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Permeabilidade , Índice de Gravidade de Doença , Transdução de Sinais , Linfócitos T
7.
Sci Rep ; 6: 26822, 2016 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-27241320

RESUMO

The zebrafish has the capacity to regenerate its heart after severe injury. While the function of a few genes during this process has been studied, we are far from fully understanding how genes interact to coordinate heart regeneration. To enable systematic insights into this phenomenon, we generated and integrated a dynamic co-expression network of heart regeneration in the zebrafish and linked systems-level properties to the underlying molecular events. Across multiple post-injury time points, the network displays topological attributes of biological relevance. We show that regeneration steps are mediated by modules of transcriptionally coordinated genes, and by genes acting as network hubs. We also established direct associations between hubs and validated drivers of heart regeneration with murine and human orthologs. The resulting models and interactive analysis tools are available at http://infused.vital-it.ch. Using a worked example, we demonstrate the usefulness of this unique open resource for hypothesis generation and in silico screening for genes involved in heart regeneration.


Assuntos
Coração/fisiologia , Miocárdio/metabolismo , Regeneração , Animais , Expressão Gênica , Traumatismos Cardíacos/fisiopatologia , Transcriptoma , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
8.
BMC Genomics ; 15: 852, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25280539

RESUMO

BACKGROUND: Zebrafish is a clinically-relevant model of heart regeneration. Unlike mammals, it has a remarkable heart repair capacity after injury, and promises novel translational applications. Amputation and cryoinjury models are key research tools for understanding injury response and regeneration in vivo. An understanding of the transcriptional responses following injury is needed to identify key players of heart tissue repair, as well as potential targets for boosting this property in humans. RESULTS: We investigated amputation and cryoinjury in vivo models of heart damage in the zebrafish through unbiased, integrative analyses of independent molecular datasets. To detect genes with potential biological roles, we derived computational prediction models with microarray data from heart amputation experiments. We focused on a top-ranked set of genes highly activated in the early post-injury stage, whose activity was further verified in independent microarray datasets. Next, we performed independent validations of expression responses with qPCR in a cryoinjury model. Across in vivo models, the top candidates showed highly concordant responses at 1 and 3 days post-injury, which highlights the predictive power of our analysis strategies and the possible biological relevance of these genes. Top candidates are significantly involved in cell fate specification and differentiation, and include heart failure markers such as periostin, as well as potential new targets for heart regeneration. For example, ptgis and ca2 were overexpressed, while usp2a, a regulator of the p53 pathway, was down-regulated in our in vivo models. Interestingly, a high activity of ptgis and ca2 has been previously observed in failing hearts from rats and humans. CONCLUSIONS: We identified genes with potential critical roles in the response to cardiac damage in the zebrafish. Their transcriptional activities are reproducible in different in vivo models of cardiac injury.


Assuntos
Traumatismos Cardíacos/metabolismo , Animais , Biologia Computacional , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Modelos Animais de Doenças , Endopeptidases/genética , Endopeptidases/metabolismo , Coração/fisiologia , Traumatismos Cardíacos/genética , Traumatismos Cardíacos/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Regeneração , Fatores de Tempo , Transcriptoma , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
9.
Front Genet ; 5: 470, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25628646

RESUMO

Among a diversity of animal models of disease, the zebrafish is a promising model organism for enabling novel translational biomedical research. To fully achieve the latter, a key requirement is to match molecular readouts measured in zebrafish with information relevant to health and disease in humans. A fundamental step in this direction is to accurately map gene sequences from zebrafish to humans. Despite significant progress in genome annotation, this remains an intricate and time-consuming challenge. Here we discuss major obstacles that we had to overcome to systematically map genes from zebrafish to human. We identified important disparities, as well as partial agreements, between five public zebrafish-to-human homology resources. There is still a need for standardized, comprehensive genomic mappings between zebrafish and humans. Without this, efforts to use zebrafish as a powerful translational research tool will be stalled.

10.
BMC Med Genomics ; 6: 13, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23574622

RESUMO

BACKGROUND: This study aims to expand knowledge of the complex process of myocardial infarction (MI) through the application of a systems-based approach. METHODS: We generated a gene co-expression network from microarray data originating from a mouse model of MI. We characterized it on the basis of connectivity patterns and independent biological information. The potential clinical novelty and relevance of top predictions were assessed in the context of disease classification models. Models were validated using independent gene expression data from mouse and human samples. RESULTS: The gene co-expression network consisted of 178 genes and 7298 associations. The network was dissected into statistically and biologically meaningful communities of highly interconnected and co-expressed genes. Among the most significant communities, one was distinctly associated with molecular events underlying heart repair after MI (P < 0.05). Col5a2, a gene previously not specifically linked to MI response but responsible for the classic type of Ehlers-Danlos syndrome, was found to have many and strong co-expression associations within this community (11 connections with ρ > 0.85). To validate the potential clinical application of this discovery, we tested its disease discriminatory capacity on independently generated MI datasets from mice and humans. High classification accuracy and concordance was achieved across these evaluations with areas under the receiving operating characteristic curve above 0.8. CONCLUSION: Network-based approaches can enable the discovery of clinically-interesting predictive insights that are accurate and robust. Col5a2 shows predictive potential in MI, and in principle may represent a novel candidate marker for the identification and treatment of ischemic cardiovascular disease.


Assuntos
Colágeno Tipo V/genética , Infarto do Miocárdio/genética , Animais , Área Sob a Curva , Bases de Dados Factuais , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Camundongos , Infarto do Miocárdio/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Curva ROC
11.
BMC Med Genomics ; 4: 83, 2011 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-22136666

RESUMO

BACKGROUND: Prediction of left ventricular (LV) remodeling after acute myocardial infarction (MI) is clinically important and would benefit from the discovery of new biomarkers. METHODS: Blood samples were obtained upon admission in patients with acute ST-elevation MI who underwent primary percutaneous coronary intervention. Messenger RNA was extracted from whole blood cells. LV function was evaluated by echocardiography at 4-months. RESULTS: In a test cohort of 32 MI patients, integrated analysis of microarrays with a network of protein-protein interactions identified subgroups of genes which predicted LV dysfunction (ejection fraction ≤ 40%) with areas under the receiver operating characteristic curve (AUC) above 0.80. Candidate genes included transforming growth factor beta receptor 1 (TGFBR1). In a validation cohort of 115 MI patients, TGBFR1 was up-regulated in patients with LV dysfunction (P < 0.001) and was associated with LV function at 4-months (P = 0.003). TGFBR1 predicted LV function with an AUC of 0.72, while peak levels of troponin T (TnT) provided an AUC of 0.64. Adding TGFBR1 to the prediction of TnT resulted in a net reclassification index of 8.2%. When added to a mixed clinical model including age, gender and time to reperfusion, TGFBR1 reclassified 17.7% of misclassified patients. TGFB1, the ligand of TGFBR1, was also up-regulated in patients with LV dysfunction (P = 0.004), was associated with LV function (P = 0.006), and provided an AUC of 0.66. In the rat MI model induced by permanent coronary ligation, the TGFB1-TGFBR1 axis was activated in the heart and correlated with the extent of remodeling at 2 months. CONCLUSIONS: We identified TGFBR1 as a new candidate prognostic biomarker after acute MI.


Assuntos
Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Doença Aguda , Adulto , Idoso , Idoso de 80 Anos ou mais , Proteínas Angiogênicas/genética , Biomarcadores/metabolismo , Células Sanguíneas/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Família Multigênica/genética , Infarto do Miocárdio/sangue , Infarto do Miocárdio/fisiopatologia , Miocárdio/metabolismo , Prognóstico , Mapas de Interação de Proteínas , Proteínas Serina-Treonina Quinases/genética , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/genética , Reprodutibilidade dos Testes , Fator de Crescimento Transformador beta1/metabolismo , Remodelação Ventricular
12.
BMC Med Genomics ; 4: 59, 2011 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-21756327

RESUMO

BACKGROUND: Inflammation plays an important role in cardiac repair after myocardial infarction (MI). Nevertheless, the systems-level characterization of inflammation proteins in MI remains incomplete. There is a need to demonstrate the potential value of molecular network-based approaches to translational research. We investigated the interplay of inflammation proteins and assessed network-derived knowledge to support clinical decisions after MI. The main focus is the prediction of clinical outcome after MI. METHODS: We assembled My-Inflamome, a network of protein interactions related to inflammation and prognosis in MI. We established associations between network properties, disease biology and capacity to distinguish between prognostic categories. The latter was tested with classification models built on blood-derived microarray data from post-MI patients with different outcomes. This was followed by experimental verification of significant associations. RESULTS: My-Inflamome is organized into modules highly specialized in different biological processes relevant to heart repair. Highly connected proteins also tend to be high-traffic components. Such bottlenecks together with genes extracted from the modules provided the basis for novel prognostic models, which could not have been uncovered by standard analyses. Modules with significant involvement in transcriptional regulation are targeted by a small set of microRNAs. We suggest a new panel of gene expression biomarkers (TRAF2, SHKBP1 and UBC) with high discriminatory capability. Follow-up validations reported promising outcomes and motivate future research. CONCLUSION: This study enhances understanding of the interaction network that executes inflammatory responses in human MI. Network-encoded information can be translated into knowledge with potential prognostic application. Independent evaluations are required to further estimate the clinical relevance of the new prognostic genes.


Assuntos
Mediadores da Inflamação/metabolismo , Infarto do Miocárdio/metabolismo , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Biomarcadores/metabolismo , Seguimentos , Humanos , Inflamação/genética , Inflamação/metabolismo , Pessoa de Meia-Idade , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/genética , Prognóstico , Fator 2 Associado a Receptor de TNF/genética , Fator 2 Associado a Receptor de TNF/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-21634220

RESUMO

BACKGROUND: The CC-chemokine receptor 5 (CCR5) is regulating inflammatory pathways and may thus be implicated in the development and progression of heart failure (HF). A 32 base pair deletion of the ccr5 gene, called CCR5delta32, prevents the expression of CCR5 at the cell surface. We analyzed the association between the CCR5delta32 deletion and the risk and severity of myocardial infarction (MI) in a cohort of patients from Luxembourg. METHODS: Using TaqMan allelic discrimination assay, we genotyped a total of 1080 patients undergoing coronary angiography. This population contained 3 groups of patients: controls with atypical chest pain, abnormal stress testing but normal coronary angiography (n = 154), patients with angina who underwent uncomplicated primary coronary intervention (n = 230), and patients with acute MI (n = 696). In MI patients, left ventricular ejection fraction (LVEF) was determined 1-month after MI with echocardiography. RESULTS: The frequency of the CCR5delta32 deletion was 16.3% in the global population, and was similar between controls, patients with angina and MI patients. The deletion was not associated with variations of plasma levels of creatine phosphokinase and troponin T, nor it was associated with LVEF, New York Heart Association class or 2-year mortality. The frequency of the deletion was comparable between MI patients with LV dysfunction (EF < or = 40%, n = 82) and no LV dysfunction (EF > 40%, n = 402). CONCLUSIONS: The frequency of the CCR5delta32 deletion in Luxembourg is similar to that observed in other European countries and is not associated with the risk of developing MI and LV dysfunction.


Assuntos
Infarto do Miocárdio/genética , Receptores CCR5/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Creatina Quinase/sangue , Feminino , Deleção de Genes , Predisposição Genética para Doença , Humanos , Luxemburgo , Masculino , Pessoa de Meia-Idade , Troponina T/sangue , Disfunção Ventricular Esquerda/genética
14.
J Cardiovasc Transl Res ; 4(6): 790-800, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21538184

RESUMO

Recent evidence suggests that Toll-like receptor 4 (TLR4) is not only involved in innate immunity but is also an important mediator of adverse left ventricular remodeling and heart failure following acute myocardial infarction (MI). TLR4 is activated by lipopolysaccharide (LPS) but also by products of matrix degradation such as hyaluronic acid and heparan sulfate. Although cardioprotective properties of adenosine (Ado) have been extensively studied, its potential to interfere with TLR4 activation is unknown. We observed that TLR4 pathway is activated in white blood cells from MI patients. TLR4 mRNA expression correlated with troponin T levels (R (2) = 0.75; P = 0.01) but not with levels of white blood cells and C-reactive protein. Ado downregulated TLR4 expression at the surface of human macrophages (-50%, P < 0.05). Tumor necrosis factor-α production induced by the TLR4 ligands LPS, hyaluronic acid, and heparan sulfate was potently inhibited by Ado (-75% for LPS, P < 0.005). This effect was reproduced by the A2A Ado receptor agonist CGS21680 and the non-selective agonist NECA and was inhibited by the A2A antagonist SCH58261 and the A2A/A2B antagonist ZM241,385. In contrast, Ado induced a 3-fold increase of TLR4 mRNA expression (P = 0.008), revealing the existence of a feedback mechanism to compensate for the loss of TLR4 expression at the cell surface. In conclusion, the TLR4 pathway is activated after MI and correlates with infarct severity but not with the extent of inflammation. Reduction of TLR4 expression by Ado may therefore represent an important strategy to limit remodeling post-MI.


Assuntos
Adenosina/metabolismo , Membrana Celular/efeitos dos fármacos , Heparitina Sulfato/farmacologia , Ácido Hialurônico/farmacologia , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Infarto do Miocárdio/metabolismo , Receptor 4 Toll-Like/agonistas , Agonistas do Receptor A2 de Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/farmacologia , Adulto , Idoso , Estudos de Casos e Controles , Membrana Celular/imunologia , Membrana Celular/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Regulação para Baixo , Feminino , Humanos , Inflamação/genética , Inflamação/imunologia , Ligantes , Luxemburgo , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/genética , Infarto do Miocárdio/imunologia , RNA Mensageiro/metabolismo , Receptor A2A de Adenosina/efeitos dos fármacos , Receptor A2A de Adenosina/metabolismo , Receptor A2B de Adenosina/efeitos dos fármacos , Receptor A2B de Adenosina/metabolismo , Sistema de Registros , Fatores de Tempo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
15.
J Biol Chem ; 283(35): 24212-23, 2008 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-18577523

RESUMO

Talin establishes a major link between integrins and actin filaments and contains two distinct integrin binding sites: one, IBS1, located in the talin head domain and involved in integrin activation and a second, IBS2, that maps to helix 50 of the talin rod domain and is essential for linking integrin beta subunits to the cytoskeleton ( Moes, M., Rodius, S., Coleman, S. J., Monkley, S. J., Goormaghtigh, E., Tremuth, L., Kox, C., van der Holst, P. P., Critchley, D. R., and Kieffer, N. (2007) J. Biol. Chem. 282, 17280-17288 ). Through the combined approach of mutational analysis of the beta3 integrin cytoplasmic tail and the talin rod IBS2 site, SPR binding studies, as well as site-specific antibody inhibition experiments, we provide evidence that the integrin beta3-talin rod interaction relies on a helix-helix association between alpha-helix 50 of the talin rod domain and the membrane-proximal alpha-helix of the beta3 integrin cytoplasmic tail. Moreover, charge complementarity between the highly conserved talin rod IBS2 lysine residues and integrin beta3 glutamic acid residues is necessary for this interaction. Our results support a model in which talin IBS2 binds to the same face of the beta3 subunit cytoplasmic helix as the integrin alphaIIb cytoplasmic tail helix, suggesting that IBS2 can only interact with the beta3 subunit following integrin activation.


Assuntos
Integrina beta3/metabolismo , Modelos Moleculares , Talina/metabolismo , Citoesqueleto de Actina/química , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Integrina beta3/química , Integrina beta3/genética , Mapeamento de Peptídeos/métodos , Glicoproteína IIb da Membrana de Plaquetas/química , Glicoproteína IIb da Membrana de Plaquetas/genética , Glicoproteína IIb da Membrana de Plaquetas/metabolismo , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína/fisiologia , Estrutura Terciária de Proteína/fisiologia , Talina/química , Talina/genética
16.
J Cell Physiol ; 212(2): 439-49, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17474077

RESUMO

Mice lacking the alpha6 integrin chain die at birth with severe skin blistering. To further study the function of alpha6 integrin in skin, we generated conditionally immortalized cell lines from the epidermis of wild-type and alpha6 deficient mouse embryos. Mutant cells presented a decreased adhesion on laminin 5, the major component of the basement membrane in the skin, and on laminins 10/11 and 2. A DNA array analysis revealed alterations in the expression of extracellular matrix (ECM) components including laminin 5, cytoskeletal elements, but also membrane receptors like the hemidesmosomal components integrin beta4 and collagen XVII, or growth factors and signaling molecules of the TGFbeta, EGF, and Wnt pathways. Finally, an increase of several epidermal differentiation markers was observed in cells and tissue at the protein level. Further examination of the mutant tissue revealed alterations in the filaggrin signal. These differences may be linked to an upregulation of the TGFbeta and the Jun/Fos pathways in mutant keratinocytes. These results are in favor of a role for integrin alpha6beta4 in the maintenance of basal keratinocyte properties and epidermal homeostasis.


Assuntos
Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Integrina alfa6/metabolismo , Queratinócitos/metabolismo , Transdução de Sinais/genética , Fator de Transcrição AP-1/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Adesão Celular , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Linhagem Celular , Núcleo Celular/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Feto/citologia , Feto/metabolismo , Perfilação da Expressão Gênica , Integrina alfa6/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Laminina/metabolismo , Camundongos , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , RNA Mensageiro/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Calinina
17.
J Biol Chem ; 282(23): 17280-8, 2007 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-17430904

RESUMO

Talin1 is a large cytoskeletal protein that links integrins to actin filaments through two distinct integrin binding sites, one present in the talin head domain (IBS1) necessary for integrin activation and a second (IBS2) that we have previously mapped to talin residues 1984-2113 (fragment J) of the talin rod domain (1 Tremuth, L., Kreis, S., Melchior, C., Hoebeke, J., Ronde, P., Plancon, S., Takeda, K., and Kieffer, N. (2004) J. Biol. Chem. 279, 22258-22266), but whose functional role is still elusive. Using a bioinformatics and cell biology approach, we have determined the minimal structure of IBS2 and show that this integrin binding site corresponds to 23 residues located in alpha helix 50 of the talin rod domain (residues 2077-2099). Alanine mutation of 2 highly conserved residues (L2094A/I2095A) within this alpha helix, which disrupted the alpha-helical structure of IBS2 as demonstrated by infrared spectroscopy and limited trypsin proteolysis, was sufficient to prevent in vivo talin fragment J targeting to alphaIIbbeta3 integrin in focal adhesions and to inhibit in vitro this association as shown by an alphaIIbbeta3 pulldown assay. Moreover, expression of a full-length mouse green fluorescent protein-talin LI/AA mutant in mouse talin1(-/-) cells was unable to rescue the inability of these cells to assemble focal adhesions (in contrast to green fluorescent protein-talin wild type) despite the presence of IBS1. Our data provide the first direct evidence that IBS2 in the talin rod is essential to link integrins to the cytoskeleton.


Assuntos
Citoesqueleto/metabolismo , Integrinas/metabolismo , Talina/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Células CHO , Cricetinae , Cricetulus , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Hidrólise , Dados de Sequência Molecular , Mutagênese , Homologia de Sequência de Aminoácidos , Espectrofotometria Infravermelho , Talina/química , Talina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...