Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Technol ; 43(19): 2956-2967, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33775228

RESUMO

Oil spills in aquatic ecosystems cause irreparable damage to marine life and the coastal populations of affected areas. In recent years, chemical dispersants have been extensively used to remedy these impacted ecosystems, although these agents have been increasingly restricted due to their toxic potential. In this context, biosurfactants are emerging as a promising alternative to chemical dispersants, which have some advantages including low toxicity, high biodegradability and good ecological acceptability. Thus, this study aimed to the production of biosurfactant by the bacteria Serratia marcescens UCP 1549 for application as biodispersant. The experiment was carried out using wheat bran as substrate in solid-state fermentation (SSF) as low-cost technology. Biosurfactant production was verified by the reduction of surface tension (28.4 mN/m) and interfacial tension (4.1 mN/m) with n-hexadecane. Also, promising result of emulsification (94%) with burned motor oil was obtained. Acid precipitation yielded 52.0 g/kg dry substrate of biosurfactant, that was identified as an anionic compound of a lipopeptide nature by the Zeta potential and FTIR spectrum, respectively. The biomolecule showed stability under extreme conditions of temperature, pH and salinity, as well as low toxicity against the microcrustacean Artemia salina. In addition, the biosurfactant demonstrated excellent properties to dispersing burned motor oil in water (ODA = 50.24 cm2) and to washing of marine stones (100% removal of burned motor oil). Therefore, these results confirm SSF as a sustainable technology for the production of biodispersant by S. marcescens UCP 1549, promising in the bioremediation of marine ecosystems impacted by petroderivatives.


Assuntos
Poluição por Petróleo , Petróleo , Biodegradação Ambiental , Ecossistema , Fermentação , Serratia marcescens , Tensoativos/química
2.
Arch Microbiol ; 203(7): 4091-4100, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34052891

RESUMO

This work aimed to investigate the production of prodigiosin by S. marcescens UCP 1549 in solid-state fermentation (SSF), as a sustainable alternative for reducing the production costs and environmental impact. Thus, different agro-industrial substrates were used in the formulation of the prodigiosin production medium, obtaining the maximum yield of pigment (119.8 g/kg dry substrate) in medium consisting of 5 g wheat bran, 5% waste soybean oil and saline solution. The pigment was confirmed as prodigiosin by the maximum absorbance peak at 535 nm, Rf 0.9 in TLC, and the functional groups by infrared spectrum (FTIR). Prodigiosin demonstrated stability at different values of temperature, pH and NaCl concentrations and antimicrobial properties, as well as not show any toxicity. These results confirm the applicability of SSF as a sustainable and promising technology and wheat bran as potential agrosubstrate to produce prodigiosin, making the bioprocess economic and competitive for industrial purposes.


Assuntos
Microbiologia Industrial , Prodigiosina , Serratia marcescens , Antibacterianos/biossíntese , Meios de Cultura/química , Fermentação , Microbiologia Industrial/métodos , Prodigiosina/biossíntese , Serratia marcescens/metabolismo
3.
Int J Mol Sci ; 21(12)2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32560213

RESUMO

We investigated the influence of corn steep liquor (CSL) and cassava waste water (CWW) as carbon and nitrogen sources on the morphology and production of biomass and chitosan by Mucor subtilissimus UCP 1262 and Lichtheimia hyalospora UCP 1266. The highest biomass yields of 4.832 g/L (M. subtilissimus UCP 1262) and 6.345 g/L (L. hyalospora UCP 1266) were produced in assay 2 (6% CSL and 4% CWW), factorial design 22, and also favored higher chitosan production (32.471 mg/g) for M. subtilissimus. The highest chitosan production (44.91 mg/g) by L. hyalospora (UCP 1266) was obtained at the central point (4% of CWW and 6% of CSL). The statistical analysis, the higher concentration of CSL, and lower concentration of CWW significantly contributed to the growth of the strains. The FTIR bands confirmed the deacetylation degree of 80.29% and 83.61% of the chitosan produced by M. subtilissimus (UCP 1262) and L. hyalospora (UCP 1266), respectively. M. subtilissimus (UCP 1262) showed dimorphism in assay 4-6% CSL and 8% CWW and central point. L. hyalospora (UCP 1266) was optimized using a central composite rotational design, and the highest yield of chitosan (63.18 mg/g) was obtained in medium containing 8.82% CSL and 7% CWW. The experimental data suggest that the use of CSL and CWW is a promising association to chitosan production.


Assuntos
Quitosana/metabolismo , Mucor/crescimento & desenvolvimento , Mucorales/crescimento & desenvolvimento , Acetilação , Biomassa , Carbono/metabolismo , Manihot/química , Mucor/metabolismo , Mucorales/metabolismo , Nitrogênio/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Águas Residuárias/química , Zea mays/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...