Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36365660

RESUMO

In this study, composite material films of pyridine-based polymer and metal oxides (ZnO and TiO2) were successfully deposited by spin coating method for environmental remediation. Firstly, the polymers poly(2-vinylpyridine) P(2-VP), and poly(4-vinylpyridine) P(4-VP) were synthesized via solution polymerization. The analysis by grazing incidence X-ray diffraction (GIXRD) reveals semicrystalline nature and scanning electron microscopy (SEM) indicates that the poly(vinylpyridines) clusters of particles were observed on the surface of the films. It was also shown that the morphology of composite materials is completely dependent on the chemical nature of the oxide. In the case of P(2-VP)-TiO2 and P(4-VP)-TiO2, some channels or pathways of TiO2 on the surface of films were observed. However, the surface morphology of the polymer composites formulated with ZnO shows a homogeneous distribution in P(2-VP) and P(4-VP) matrix. The effectiveness of the composite materials in the photodegradation of methyl orange (MO) was evaluated by photocatalysis. According to the results, the P(4-VP)-ZnO composite exhibited the highest photodegradation of MO, allowing the separation of photogenerated species required for the photocatalytic reaction. The P(4-VP)-ZnO composite was also tested in benzoic acid (BA) photodegradation in water. The presence of some scavengers in the reaction system reveals that hydroxyl radicals (OH•), superoxide radicals (O2-•) and holes (h+) are responsible for the BA reduction by photocatalysis.

2.
Environ Sci Pollut Res Int ; 28(1): 974-981, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32829431

RESUMO

Diethyl phthalate (DEP) is a pollutant which can be found on soils as a result of its widespread application in plastic industry. Soil contaminated with DEP requires the application of different chemical methods to attain its remediation. Among these methods, ozonation has proven to be effective against toxic soil pollutants. The presence of metal oxides in soil is a possible source of catalytic effect. In this study, it was analyzed the catalytic effect of goethite (α-FeOOH), hematite (α-Fe2O3), and gibbsite (γ-Al(OH)3) in combination with O3 to achieve DEP decomposition. The DEP elimination efficiency by ozonation on the sand increased according to the following order: without catalyst < γ-Al(OH)3 < α-Fe2O3 < α-FeOOH. Among these three oxides, goethite has the highest OH groups density. The reaction of OH groups and O3 favors the formation of oxidant species, such as O2•- and OH•. The effect of the moisture content, the catalyst concentration, and the type of soil (sand and calcined soil) were also studied. The latter had a significant influence on the total organic carbon (TOC) removal. The mineralization degree was 84% in the O3-soil system, while only 40% was obtained with O3-sand (α-FeOOH) in dry sand after 8 h of treatment. Calcined soil promoted the increase of TOC removal due to the presence of different metal oxides, which were active centers for O3 decomposition. The toxicity tests of the three reaction systems (O3-sand, O3-sand (α-FeOOH), and O3-soil) were evaluated on lettuce seed germination before and after DEP ozonation.


Assuntos
Ozônio , Poluentes Químicos da Água , Catálise , Compostos de Ferro , Minerais , Ácidos Ftálicos , Areia , Solo , Poluentes Químicos da Água/análise
3.
RSC Adv ; 9(26): 14822-14833, 2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35516308

RESUMO

This work evaluated the inhibition effect of low molecular weight alcohol (ethanol) on naproxen (NAP) degradation by conventional and catalytic ozonation. The reaction system considered the ethanol as complementary organic matter in water. The conventional ozonation and in the presence of nickel oxide (O3-NiO) achieved 98% NAP degradation during the first 15 min of reaction despite the presence of ethanol. However, NAP degradation presented a delaying effect during the first minutes of treatment with this alcohol. The latter phenomenon indicates that ethanol concentration played a meaningful role in ozonation effectiveness in comparison with the presence of NiO catalyst. The presence of NiO did not generate differences in the byproducts in comparison with conventional ozonation. The intermediates were detected using the Electrospray Ionization Mass Spectrometry technique and have only one aromatic ring in their chemical structure. In samples without ethanol, these byproducts appeared only in the first 5 min of reaction. The TOC study demonstrated the increment of 25% in the mineralization degree with the presence of NiO due to the formation of ·OH species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...