Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Eye Res ; 182: 182-193, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30953624

RESUMO

This paper aims to identify key biological processes triggered by resection surgery in the extraocular muscles (EOMs) of a rabbit model of strabismus surgery by studying changes in gene expression. Resection surgery was performed in the superior rectus of 16 rabbits and a group of non-operated rabbits served as control. Muscle samples were collected from groups of four animals 1, 2, 4 and 6 weeks after surgery and processed for RNA-sequencing and immunohistochemistry. We identified a total of 164; 136; 64 and 12 differentially expressed genes 1, 2, 4 and 6 weeks after surgery. Gene Ontology enrichment analysis revealed that differentially expressed genes were involved in biological pathways related to metabolism, response to stimulus mainly related with regulation of immune response, cell cycle and extracellular matrix. A complementary pathway analysis and network analysis performed with Ingenuity Pathway Analysis tool corroborated and completed these findings. Collagen I, fibronectin and versican, evaluated by immunofluorescence, showed that changes at the gene expression level resulted in variation at the protein level. Tenascin-C staining in resected muscles demonstrated the formation of new tendon and myotendinous junctions. These data provide new insights about the biological response of the EOMs to resection surgery and may form the basis for future strategies to improve the outcome of strabismus surgery.


Assuntos
Músculos Oculomotores/metabolismo , Estrabismo/metabolismo , Estrabismo/cirurgia , Animais , Ciclo Celular/fisiologia , Modelos Animais de Doenças , Matriz Extracelular/fisiologia , Perfilação da Expressão Gênica , Imunidade Inata/fisiologia , Coelhos
2.
Invest Ophthalmol Vis Sci ; 59(12): 4847-4855, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30347079

RESUMO

Purpose: To investigate the effect of absence of desmin on the extraocular muscles (EOMs) with focus on the structure and composition of the cytoskeleton. Methods: The distribution of synemin, syncoilin, plectin, nestin, and dystrophin was evaluated on cross and longitudinal sections of EOMs and limb muscles from 1-year-old desmin knockout mice (desmin-/-) by immunofluorescence. General morphology was evaluated with hematoxylin and eosin while mitochondrial content and distribution were evaluated by succinate dehydrogenase (SDH) and modified Gomori trichrome stainings. Results: The muscle fibers of the EOMs in desmin-/- mice were remarkably well preserved in contrast to those in the severely affected soleus and the slightly affected gastrocnemius muscles. There were no signs of muscular pathology in the EOMs and all cytoskeletal proteins studied showed a correct location at sarcolemma and Z-discs. However, an increase of SDH staining and mitochondrial aggregates under the sarcolemma was detected. Conclusions: The structure of the EOMs was well preserved in the absence of desmin. We suggest that desmin is not necessary for correct synemin, syncoilin, plectin, and dystrophin location on the cytoskeleton of EOMs. However, it is needed to maintain an appropriate mitochondrial distribution in both EOMs and limb muscles.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/fisiologia , Desmina/fisiologia , Proteínas Musculares/metabolismo , Músculos Oculomotores/citologia , Animais , Técnica Indireta de Fluorescência para Anticorpo , Camundongos , Camundongos Knockout , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Músculos Oculomotores/metabolismo
3.
PLoS One ; 10(12): e0145107, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26670220

RESUMO

BACKGROUND: Collagen VI related myopathies encompass a range of phenotypes with involvement of skeletal muscle, skin and other connective tissues. They represent a severe and relatively common form of congenital disease for which there is no treatment. Collagen VI in skeletal muscle and skin is produced by fibroblasts. AIMS & METHODS: In order to gain insight into the consequences of collagen VI mutations and identify key disease pathways we performed global gene expression analysis of dermal fibroblasts from patients with Ullrich Congenital Muscular Dystrophy with and without vitamin C treatment. The expression data were integrated using a range of systems biology tools. Results were validated by real-time PCR, western blotting and functional assays. FINDINGS: We found significant changes in the expression levels of almost 600 genes between collagen VI deficient and control fibroblasts. Highly regulated genes included extracellular matrix components and surface receptors, including integrins, indicating a shift in the interaction between the cell and its environment. This was accompanied by a significant increase in fibroblasts adhesion to laminin. The observed changes in gene expression profiling may be under the control of two miRNAs, miR-30c and miR-181a, which we found elevated in tissue and serum from patients and which could represent novel biomarkers for muscular dystrophy. Finally, the response to vitamin C of collagen VI mutated fibroblasts significantly differed from healthy fibroblasts. Vitamin C treatment was able to revert the expression of some key genes to levels found in control cells raising the possibility of a beneficial effect of vitamin C as a modulator of some of the pathological aspects of collagen VI related diseases.


Assuntos
Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Distrofias Musculares/genética , Esclerose/genética , Ácido Ascórbico/farmacologia , Adesão Celular/efeitos dos fármacos , Adesão Celular/genética , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Matriz Extracelular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Integrina alfa3/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Distrofias Musculares/patologia , Esclerose/patologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Cicatrização/efeitos dos fármacos , Cicatrização/genética
4.
BMC Genomics ; 15: 91, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24484525

RESUMO

BACKGROUND: Mutations in the gene encoding thymidine kinase 2 (TK2) result in the myopathic form of mitochondrial DNA depletion syndrome which is a mitochondrial encephalomyopathy presenting in children. In order to unveil some of the mechanisms involved in this pathology and to identify potential biomarkers and therapeutic targets we have investigated the gene expression profile of human skeletal muscle deficient for TK2 using cDNA microarrays. RESULTS: We have analysed the whole transcriptome of skeletal muscle from patients with TK2 mutations and compared it to normal muscle and to muscle from patients with other mitochondrial myopathies. We have identified a set of over 700 genes which are differentially expressed in TK2 deficient muscle. Bioinformatics analysis reveals important changes in muscle metabolism, in particular, in glucose and glycogen utilisation, and activation of the starvation response which affects aminoacid and lipid metabolism. We have identified those transcriptional regulators which are likely to be responsible for the observed changes in gene expression. CONCLUSION: Our data point towards the tumor suppressor p53 as the regulator at the centre of a network of genes which are responsible for a coordinated response to TK2 mutations which involves inflammation, activation of muscle cell death by apoptosis and induction of growth and differentiation factor 15 (GDF-15) in muscle and serum. We propose that GDF-15 may represent a potential novel biomarker for mitochondrial dysfunction although further studies are required.


Assuntos
Perfilação da Expressão Gênica , Fator 15 de Diferenciação de Crescimento/genética , Miopatias Mitocondriais/genética , Timidina Quinase/genética , Proteína Supressora de Tumor p53/metabolismo , Adolescente , Adulto , Biomarcadores/metabolismo , Caspase 3/metabolismo , Criança , Pré-Escolar , Biologia Computacional , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Fator 15 de Diferenciação de Crescimento/sangue , Fator 15 de Diferenciação de Crescimento/metabolismo , Humanos , Lactente , Miopatias Mitocondriais/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Transdução de Sinais , Timidina Quinase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...