Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Viruses ; 6(6): 2416-27, 2014 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-24956179

RESUMO

Bovine leukemia virus (BLV) and human T-lymphotropic virus type 1 (HTLV-1) are closely related d-retroviruses that induce hematological diseases. HTLV-1 infects about 15 million people worldwide, mainly in subtropical areas. HTLV-1 induces a wide spectrum of diseases (e.g., HTLV-associated myelopathy/tropical spastic paraparesis) and leukemia/lymphoma (adult T-cell leukemia). Bovine leukemia virus is a major pathogen of cattle, causing important economic losses due to a reduction in production, export limitations and lymphoma-associated death. In the absence of satisfactory treatment for these diseases and besides the prevention of transmission, the best option to reduce the prevalence of d-retroviruses is vaccination. Here, we provide an overview of the different vaccination strategies in the BLV model and outline key parameters required for vaccine efficacy.


Assuntos
Infecções por Deltaretrovirus/prevenção & controle , Deltaretrovirus/imunologia , Vacinação , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Bovinos , Deltaretrovirus/fisiologia , Infecções por Deltaretrovirus/virologia , Leucose Enzoótica Bovina/prevenção & controle , Leucose Enzoótica Bovina/virologia , Infecções por HTLV-I/prevenção & controle , Vírus Linfotrópico T Tipo 1 Humano/imunologia , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Humanos , Vírus da Leucemia Bovina/imunologia , Vírus da Leucemia Bovina/fisiologia , Vacinas Atenuadas/imunologia
2.
PLoS Pathog ; 9(10): e1003687, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24098130

RESUMO

Deltaretroviruses such as human T-lymphotropic virus type 1 (HTLV-1) and bovine leukemia virus (BLV) induce a persistent infection that remains generally asymptomatic but can also lead to leukemia or lymphoma. These viruses replicate by infecting new lymphocytes (i.e. the infectious cycle) or via clonal expansion of the infected cells (mitotic cycle). The relative importance of these two cycles in viral replication varies during infection. The majority of infected clones are created early before the onset of an efficient immune response. Later on, the main replication route is mitotic expansion of pre-existing infected clones. Due to the paucity of available samples and for ethical reasons, only scarce data is available on early infection by HTLV-1. Therefore, we addressed this question in a comparative BLV model. We used high-throughput sequencing to map and quantify the insertion sites of the provirus in order to monitor the clonality of the BLV-infected cells population (i.e. the number of distinct clones and abundance of each clone). We found that BLV propagation shifts from cell neoinfection to clonal proliferation in about 2 months from inoculation. Initially, BLV proviral integration significantly favors transcribed regions of the genome. Negative selection then eliminates 97% of the clones detected at seroconversion and disfavors BLV-infected cells carrying a provirus located close to a promoter or a gene. Nevertheless, among the surviving proviruses, clone abundance positively correlates with proximity of the provirus to a transcribed region. Two opposite forces thus operate during primary infection and dictate the fate of long term clonal composition: (1) initial integration inside genes or promoters and (2) host negative selection disfavoring proviruses located next to transcribed regions. The result of this initial response will contribute to the proviral load set point value as clonal abundance will benefit from carrying a provirus in transcribed regions.


Assuntos
Leucose Enzoótica Bovina/metabolismo , Genoma , Vírus da Leucemia Bovina/metabolismo , Provírus/metabolismo , Transcrição Gênica , Integração Viral , Animais , Bovinos , Leucose Enzoótica Bovina/genética , Vírus Linfotrópico T Tipo 1 Humano/genética , Vírus Linfotrópico T Tipo 1 Humano/metabolismo , Humanos , Vírus da Leucemia Bovina/genética , Provírus/genética
3.
Viruses ; 3(7): 1210-48, 2011 07.
Artigo em Inglês | MEDLINE | ID: mdl-21994777

RESUMO

Bovine leukemia virus (BLV) is a retrovirus closely related to the human T-lymphotropic virus type 1 (HTLV-1). BLV is a major animal health problem worldwide causing important economic losses. A series of attempts were developed to reduce prevalence, chiefly by eradication of infected cattle, segregation of BLV-free animals and vaccination. Although having been instrumental in regions such as the EU, these strategies were unsuccessful elsewhere mainly due to economic costs, management restrictions and lack of an efficient vaccine. This review, which summarizes the different attempts previously developed to decrease seroprevalence of BLV, may be informative for management of HTLV-1 infection. We also propose a new approach based on competitive infection with virus deletants aiming at reducing proviral loads.


Assuntos
Portador Sadio/prevenção & controle , Portador Sadio/veterinária , Leucose Enzoótica Bovina/prevenção & controle , Infecções por HTLV-I/prevenção & controle , Vírus Linfotrópico T Tipo 1 Humano/isolamento & purificação , Vírus da Leucemia Bovina/isolamento & purificação , Animais , Portador Sadio/virologia , Bovinos , Leucose Enzoótica Bovina/virologia , Infecções por HTLV-I/virologia , Humanos
4.
J Gen Virol ; 90(Pt 11): 2788-2797, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19587134

RESUMO

Previous studies have classified the env sequences of bovine leukemia virus (BLV) provirus from different locations worldwide into between two and four genetic groupings. These different studies gave unique names to the identified groups and no study has yet integrated all the available sequences. Thus, we hypothesized that many of the different groups previously identified actually correspond to a limited group of genotypes that are unevenly distributed worldwide. To examine this hypothesis, we sequenced the env gene from 28 BLV field strains and compared these sequences to 46 env sequences that represent all the genetic groupings already identified. By using phylogenetic analyses, we recovered six clades, or genotypes, that we have called genotypes 1, 2, 3, 4, 5 and 6. Genotypes 1-5 have counterparts among the sequence groupings identified previously. One env sequence did not cluster with any of the others and was highly divergent when compared with the six genotypes identified here. Thus, an extra genotype, which we named 7, may exist. Similarity comparisons were highly congruent with phylogenetic analyses. Furthermore, our analyses confirmed the existence of geographical clusters.


Assuntos
Vírus da Leucemia Bovina/classificação , Vírus da Leucemia Bovina/genética , RNA Viral/genética , Animais , Bovinos , Análise por Conglomerados , Produtos do Gene env/genética , Genótipo , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , Homologia de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...