Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Physiol Educ ; 46(2): 251-258, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35085036

RESUMO

This study proposes a hands-on activity as an experimental alternative method to teach biomedical engineering students the osmosis phenomenon. The students were guided along a learning path that involved their participation in the design and construction of a test device used to measure osmotic flow rate. Thereafter, an experiment was conducted with the test device. The students analyzed the obtained experimental values, which provided them with evidence of the functionality of the device. In addition, they were provided with the opportunity to suggest improvements and to propose alternatives to expand the use of the device to test other transport phenomena such as diffusion. Moreover, a student perception survey was conducted, and the results showed that this proposed plan allows for a better understanding of the phenomenon and stimulates the curiosity of students, improving the receptiveness, key in the learning process of the students.


Assuntos
Aprendizagem , Estudantes , Engenharia Biomédica/educação , Humanos , Osmose , Ensino
2.
Nanoscale ; 10(30): 14464-14471, 2018 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-30022175

RESUMO

Lanthanide-doped upconverting nanoparticles (Ln-UCNPs) possess optical and physicochemical properties that are promising for the design of new theranostic platforms. This applies in particular to the treatment of cancer. Towards this goal, oleate-capped-NaLuF4:Tm3+(0.5%)/Yb3+(20%)/Gd3+(30%) with an average size of 35 nm ± 2 nm were synthesized by co-precipitation. Due to their hydrophobic surface, these Ln-UCNPs produced agglomerates under cell culture conditions. To assess the cellular response to Ln-UCNPs at the molecular level, we evaluated several key aspects of tumor cell physiology. Using cancer lines of different origins, we demonstrated Ln-UCNP dependent changes of cancer cell biomarkers. Multiple cellular components that regulate tumorigenesis and cancer cell homeostasis were affected. In particular, Ln-UCNPs reduced the abundance of hsp70s, elevated DNA damage, and diminished nucleolin and B23/nucleophosmin, proteins required for the assembly of ribosomes. Treatment with Ln-UCNPs also decreased the concentration of paxillin, a focal adhesion protein that is involved in directed cell migration. Furthermore, epidermal growth factor (EGFR) levels were decreased by Ln-UCNPs for most cancer cell lines examined. Taken together, we identified several potential cancer cell targets that were affected by Ln-UCNPs. Our work thereby provides the foundation to optimize Ln-UCNPs for the targeted killing of tumor cells.


Assuntos
Biomarcadores Tumorais/metabolismo , Elementos da Série dos Lantanídeos/química , Nanopartículas/química , Linhagem Celular Tumoral , Dano ao DNA , Fator de Crescimento Epidérmico/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Medições Luminescentes , Proteínas Nucleares/metabolismo , Nucleofosmina , Paxilina/metabolismo
3.
Materials (Basel) ; 10(8)2017 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-28773228

RESUMO

The performance of a persistent phosphor is often determined by comparing luminance decay curves, expressed in cd/m 2 . However, these photometric units do not enable a straightforward, objective comparison between different phosphors in terms of the total number of emitted photons, as these units are dependent on the emission spectrum of the phosphor. This may lead to incorrect conclusions regarding the storage capacity of the phosphor. An alternative and convenient technique of characterizing the performance of a phosphor was developed on the basis of the absolute storage capacity of phosphors. In this technique, the phosphor is incorporated in a transparent polymer and the measured afterglow is converted into an absolute number of emitted photons, effectively quantifying the amount of energy that can be stored in the material. This method was applied to the benchmark phosphor SrAl 2 O 4 :Eu,Dy and to the nano-sized phosphor CaS:Eu. The results indicated that only a fraction of the Eu ions (around 1.6% in the case of SrAl 2 O 4 :Eu,Dy) participated in the energy storage process, which is in line with earlier reports based on X-ray absorption spectroscopy. These findings imply that there is still a significant margin for improving the storage capacity of persistent phosphors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...