Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(10): 11860-11869, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38496922

RESUMO

Photothermal nanocomposite hydrogels are promising materials for remotely triggering drug delivery by near-infrared (NIR) radiation stimuli. In this work, a novel hydrogel based on poly(vinyl alcohol), poly(vinyl methyl ether-alt-maleic acid), poly(vinyl methyl ether), and functionalized multiwalled carbon nanotubes (MWCNT-f) was prepared by the freeze/thaw method. A comparative characterization of materials (with and without MWCNT-f) was carried out by infrared spectroscopy, differential scanning calorimetry, scanning electron microscopy, mechanical assays, swelling kinetics measurements, and photothermal analysis under NIR irradiation. Hydrophilic chemotherapeutic 5-fluorouracil (5-FU) and hydrophobic ibuprofen drugs were independently loaded into hydrogels, and the drug release profiles were obtained under passive and NIR-irradiation conditions. The concentration-dependent cytotoxicity of materials was studied in vitro using noncancerous cells and cancer cells. Notable changes in the microstructure and physicochemical properties of hydrogels were observed by adding a low content (0.2 wt %) of MWCNT-f. The cumulative release amounts of 5-FU and ibuprofen from the hydrogel containing MWCNT-f were significantly increased by 21 and 39%, respectively, through the application of short-term NIR irradiation pulses. Appropriate concentrations of the nanocomposite hydrogel loaded with 5-FU produced cytotoxicity in cancer cells without affecting noncancerous cells. The overall properties of the MWCNT-f-containing hydrogel and its photothermal behavior make it an attractive material to promote the release of hydrophilic and hydrophobic drugs, depending on the treatment requirements.

2.
ACS Omega ; 8(47): 44784-44795, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38046300

RESUMO

The preparation method of hydrogels has a significant effect on their structural and physicochemical properties. In this report, physically and chemically cross-linked poly(vinyl alcohol) (PVA) networks containing humic acid (HA) were alternatively prepared by autoclaving (AC) and through glutaraldehyde (GA) addition, respectively, for agricultural purposes. PVA/HA hydrogels were comparatively characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, mechanical assays, scanning electron microscopy, swelling kinetics measurements, and water retention tests in soil. AC hydrogels showed a more homogeneous porous microstructure, higher swelling levels, and a better capacity to preserve the humidity of soil than those obtained by adding GA. Both PVA/HA hydrogels exhibited no phytotoxicity on cultivation trials of Sorghum sp., but the plant growth was promoted with the GA-cross-linked network as compared to the effect of the AC sample. The release behavior of urea was modified according to the preparation method of the PVA/HA hydrogels. After 3 days of sustained urea release, 91% of the fertilizer was delivered from the AC hydrogel, whereas a lower amount of 56% was released for the GA-cross-linked hydrogel. Beyond the advantages of applying PVA/HA hydrogels in the agricultural field, an appropriate method of preparing these materials endows them with specific properties according to the requirements of the target crop.

3.
ACS Omega ; 8(45): 43243-43253, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38024776

RESUMO

Conductive polymers, such as polypyrrole and polyaniline, have been extensively studied for their notable intrinsic electronic and ionic conductivities, rendering them suitable for a range of diverse applications. In this study, in situ chemical polymerization was employed to coat extruded PLA films with PPy and PANi. Morphological analysis reveals a uniform and compact deposition of both polyaniline and polypyrrole after polymerization periods of 3 and 1 h, respectively. Furthermore, the PLA-PANi-3h and PLA-PPy-1h composites exhibited the highest electrical conductivity, with values of 0.042 and 0.022 S cm-1, respectively. These findings were in agreement with the XPS results, as the polyaniline-coated film showed a higher proportion of charge carriers compared to the polypyrrole composite. The elastic modulus of the coated films showed an increase compared with that of pure PLA films. Additionally, the inflection temperatures for the PLA-PANi-3h and PLA-PPy-1h composites were 368.7 and 367.2 °C, respectively, while for pure PLA, it reached 341.47 °C. This improvement in mechanical and thermal properties revealed the effective interfacial adhesion between the PLA matrix and the conducting polymer. Therefore, this work demonstrates that coating biopolymeric matrices with PANi or PPy enables the production of functional and environmentally friendly conductive materials suitable for potential use in the removal of heavy metals in water treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA