Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Arch Microbiol ; 206(3): 123, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38407586

RESUMO

In this comprehensive study, we delved into the capabilities of five fungal strains: Aspergillus flavus, Aspergillus niger, Penicillium chrysogenum, Penicillium glabrum, and Penicillium rubens (the latter isolated from heavy crude oil [HCO]) in metabolizing HCO as a carbon source. Employing a meticulously designed experimental approach, conducted at room temperature (25 °C), we systematically explored various culture media and incubation periods. The results unveiled the exceptional resilience of all these fungi to HCO, with A. flavus standing out as the top performer. Notably, A. flavus exhibited robust growth, achieving a remarkable 59.1% expansion across the medium's surface, accompanied by distinctive macroscopic traits, including a cottony appearance and vibrant coloration. In an effort to further scrutinize its biotransformation prowess, we conducted experiments in a liquid medium, quantifying CO2 production through gas chromatography, which reached its zenith at day 30, signifying substantial bioconversion with a 38% increase in CO2 production. Additionally, we monitored changes in surface tension using the Du Noüy ring method, revealing a reduction in aqueous phase tension from 72.3 to 47 mN/m. This compelling evidence confirms that A. flavus adeptly metabolizes HCO to fuel its growth, while concurrently generating valuable biosurfactants. These findings underscore the immense biotechnological potential of A. flavus in addressing challenges related to HCO, thereby offering promising prospects for bioremediation and crude oil bioupgrading endeavors.


Assuntos
Aspergillus flavus , Dióxido de Carbono , Biodegradação Ambiental , Aspergillus niger , Biotecnologia
3.
Sci Rep ; 13(1): 17321, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833268

RESUMO

An unbalanced composition of gut microbiota in fish is hypothesized to play a role in promoting bacterial infections, but the synergistic or antagonistic interactions between bacterial groups in relation to fish health are not well understood. We report that pathogenic species in the Piscirickettsia, Aeromonas, Renibacterium and Tenacibaculum genera were all detected in the digesta and gut mucosa of healthy Atlantic salmon without clinical signs of disease. Although Piscirickettsia salmonis (and other pathogens) occurred in greater frequencies of fish with clinical Salmonid Rickettsial Septicemia (SRS), the relative abundance was about the same as that observed in healthy fish. Remarkably, the SRS-positive fish presented with a generalized mid-gut dysbiosis and positive growth associations between Piscirickettsiaceae and members of other taxonomic families containing known pathogens. The reconstruction of metabolic phenotypes based on the bacterial networks detected in the gut and mucosa indicated the synthesis of Gram-negative virulence factors such as colanic acid and O-antigen were over-represented in SRS positive fish. This evidence indicates that cooperative interactions between organisms of different taxonomic families within localized bacterial networks might promote an opportunity for P. salmonis to cause clinical SRS in the farm environment.


Assuntos
Doenças dos Peixes , Infecções por Piscirickettsiaceae , Piscirickettsiaceae , Salmo salar , Humanos , Animais , Fatores de Virulência , Doenças dos Peixes/microbiologia
4.
Animals (Basel) ; 14(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38200828

RESUMO

Maintaining the high overall health of farmed animals is a central tenant of their well-being and care. Intense animal crowding in aquaculture promotes animal morbidity especially in the absence of straightforward methods for monitoring their health. Here, we used bacterial 16S ribosomal RNA gene sequencing to measure bacterial population dynamics during P. salmonis infection. We observed a complex bacterial community consisting of a previously undescribed core pathobiome. Notably, we detected Aliivibrio wodanis and Tenacibaculum dicentrarchi on the skin ulcers of salmon infected with P. salmonis, while Vibrio spp. were enriched on infected gills. The prevalence of these co-occurring networks indicated that coinfection with other pathogens may enhance P. salmonis pathogenicity.

5.
Bioresour Technol ; 289: 121645, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31234071

RESUMO

Microalgae are affected by the amount of light received. This parameter can be controlled by changing the light source and altering the reactor used for their growth. In this study, the effect of different colors of light was analyzed in the growth of Dunaliella tertiolecta, observing that blue lighting systems reached a biomass 10 times superior to the one generated by orange lightning systems. This growth effect was seen in a novel tubular internally illuminated photobioreactor. In this photobioreactor, the blue reactor produced 1.7 times the biomass of the red reactor, with the particularity that the latter showed an oscillating behavior in its growth. From irradiance models, the light dispersion coefficient is higher than the absorption coefficient when using red light. In contrast, with blue light, the value of the scattering coefficient is almost null.


Assuntos
Microalgas , Fotobiorreatores , Biomassa , Clorofíceas , Cor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...