Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 11: e16205, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37842070

RESUMO

Background: Land use change is a key catalyst of global biodiversity loss and ecosystem degradation. Deforestation and conversion of natural habitats to agricultural or urban areas can profoundly disrupt plant-flower visitor interactions by altering their abundances and distribution. Yet, specific studies analyzing the effects of land use change on the structure of networks of the interactions between particular groups of flower visitors and their plants are still scarce. Here, we aimed to analyze how converting native habitats affects the species composition of butterfly communities and their plants, and whether this, in turn, leads to changes in the structure of interaction networks in the modified habitats. Methods: We performed bi-monthly censuses for a year to record plant-butterfly interactions and assess species diversity across three habitat types, reflecting a land-use change gradient. From original native juniper forest to urban and agricultural zones in central Mexico, one site per land use type was surveyed. Interactions were summarized in matrices on which we calculated network descriptors: connectance, nestedness and modularity. Results: We found highest butterfly diversity in native forest, with the most unique species (i.e., species not shared with the other two sites). Agricultural and urban sites had similar diversity, yet the urban site featured more unique species. The plant species richness was highest in the urban site, and the native forest site had the lowest plant species richness, with most of the plants being unique to this site. Butterfly and plant compositions contrasted most between native forest and modified sites. Network analysis showed differences between sites in the mean number of links and interactions. The urban network surpassed agriculture and native forest networks in links, while the native forest network had more interactions than the agriculture and urban networks. Native plants had more interactions than alien species. All networks exhibited low connectance and significant nestedness and modularity, with the urban network featuring the most modules (i.e., 10 modules). Conclusions: Converting native habitats to urban or agricultural areas reshapes species composition, diversity and interaction network structure for butterfly communities and plants. The urban network showed more links and modules, suggesting intricate urban ecosystems due to diverse species, enhanced resources, and ecological niches encouraging interactions and coexistence. These findings emphasize the impacts of land use change on plant-butterfly interactions and the structure of their interaction networks.


Assuntos
Borboletas , Ecossistema , Animais , México , Biodiversidade , Florestas , Plantas
2.
PLoS One ; 14(2): e0211855, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30811515

RESUMO

Mutualistic interactions are powerful drivers of biodiversity on Earth that can be represented as complex interaction networks that vary in connection pattern and intensity. One of the most fascinating mutualisms is the interaction between hummingbirds and the plants they visit. We conducted an exhaustive search for articles, theses, reports, and personal communications with researchers (unpublished data) documenting hummingbird visits to flowers of nectar-rewarding plants. Based on information gathered from 4532 interactions between 292 hummingbird species and 1287 plant species, we built an interaction network between nine hummingbird clades and 100 plant families used by hummingbirds as nectar resources at a continental scale. We explored the network architecture, including phylogenetic, morphological, biogeographical, and distributional information. As expected, the network between hummingbirds and their nectar plants was heterogeneous and nested, but not modular. When we incorporated ecological and historical information in the network nodes, we found a generalization gradient in hummingbird morphology and interaction patterns. The hummingbird clades that most recently diversified in North America acted as generalist nodes and visited flowers with ornithophilous, intermediate and non-ornithophilous morphologies, connecting a high diversity of plant families. This pattern was favored by intermediate morphologies (bill, wing, and body size) and by the low niche conservatism in these clades compared to the oldest clades that diversified in South America. Our work is the first effort exploring the hummingbird-plant mutualistic network at a continental scale using hummingbird clades and plant families as nodes, offering an alternative approach to exploring the ecological and evolutionary factors that explain plant-animal interactions at a large scale.


Assuntos
Aves/fisiologia , Comportamento Alimentar/fisiologia , Néctar de Plantas/fisiologia , Fenômenos Fisiológicos Vegetais , Animais , Biodiversidade , Tamanho Corporal , Flores/fisiologia , Polinização/fisiologia , Estações do Ano , América do Sul , Especialização , Simbiose/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...