Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 565(7740): 460-463, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30626965

RESUMO

The accretion of hydrogen onto a white dwarf star ignites a classical nova eruption1,2-a thermonuclear runaway in the accumulated envelope of gas, leading to luminosities up to a million times that of the Sun and a high-velocity mass ejection that produces a remnant shell (mainly consisting of insterstellar medium). Close to the upper mass limit of a white dwarf3 (1.4 solar masses), rapid accretion of hydrogen (about 10-7 solar masses per year) from a stellar companion leads to frequent eruptions on timescales of years4,5 to decades6. Such binary systems are known as recurrent novae. The ejecta of recurrent novae, initially moving at velocities of up to 10,000 kilometres per second7, must 'sweep up' the surrounding interstellar medium, creating cavities in space around the nova binary. No remnant larger than one parsec across from any single classical or recurrent nova eruption is known8-10, but thousands of successive recurrent nova eruptions should be capable of generating shells hundreds of parsecs across. Here we report that the most frequently recurring nova, M31N 2008-12a in the Andromeda galaxy (Messier 31 or NGC 224), which erupts annually11, is indeed surrounded by such a super-remnant with a projected size of at least 134 by 90 parsecs. Larger than almost all known remnants of even supernova explosions12, the existence of this shell demonstrates that the nova M31N 2008-12a has erupted with high frequency for millions of years.

2.
Nature ; 519(7541): 63-5, 2015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25686608

RESUMO

The planetary nebula stage is the ultimate fate of stars with masses one to eight times that of the Sun (M(⊙)). The origin of their complex morphologies is poorly understood, although several mechanisms involving binary interaction have been proposed. In close binary systems, the orbital separation is short enough for the primary star to overfill its Roche lobe as the star expands during the asymptotic giant branch phase. The excess gas eventually forms a common envelope surrounding both stars. Drag forces then result in the envelope being ejected into a bipolar planetary nebula whose equator is coincident with the orbital plane of the system. Systems in which both stars have ejected their envelopes and are evolving towards the white dwarf stage are said to be double degenerate. Here we report that Henize 2-428 has a double-degenerate core with a combined mass of ∼1.76M(⊙), which is above the Chandrasekhar limit (the maximum mass of a stable white dwarf) of 1.4M(⊙). This, together with its short orbital period (4.2 hours), suggests that the system should merge in 700 million years, triggering a type Ia supernova event. This supports the hypothesis of the double-degenerate, super-Chandrasekhar evolutionary pathway for the formation of type Ia supernovae.

3.
Science ; 339(6123): 1048-51, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23449588

RESUMO

Stellar-mass black holes (BHs) are mostly found in x-ray transients, a subclass of x-ray binaries that exhibit violent outbursts. None of the 50 galactic BHs known show eclipses, which is surprising for a random distribution of inclinations. Swift J1357.2-093313 is a very faint x-ray transient detected in 2011. On the basis of spectroscopic evidence, we show that it contains a BH in a 2.8-hour orbital period. Further, high-time-resolution optical light curves display profound dips without x-ray counterparts. The observed properties are best explained by the presence of an obscuring toroidal structure moving outward in the inner disk, seen at very high inclination. This observational feature should play a key role in models of inner accretion flows and jet collimation mechanisms in stellar-mass BHs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...