Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Materials (Basel) ; 11(5)2018 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-29738457

RESUMO

(1) Background: The use of physical barriers to prevent the invasion of gingival and connective tissue cells into bone cavities during the healing process is called guided bone regeneration. The objective of this in-vitro study was to compare the growth of human osteoblasts on Poly(Lactic⁻co⁻Glycolic) (PLGA) membranes modified with oxygen plasma and Hydroxyapatite (HA), silicon dioxide (SiO2), and titanium dioxide (TiO2) composite nanoparticles, respectively. (2) Methods: All the membranes received a common treatment with oxygen plasma and were subsequently treated with HA nanostructured coatings (n = 10), SiO2 (n = 10) and TiO2 (n = 10), respectively and a PLGA control membrane (n = 10). The assays were performed using the human osteoblast line MG-63 acquired from the Center for Scientific Instrumentation (CIC) from the University of Granada. The cell adhesion and the viability of the osteoblasts were analyzed by means of light-field microphotographs of each condition with the inverted microscope Axio Observer A1 (Carl Zeiss). For the determination of the mitochondrial energy balance, the MitoProbe™ JC-1 Assay Kit was employed. For the determination of cell growth and the morphology of adherent osteoblasts, two techniques were employed: staining with phalloidin-TRITC and staining with DAPI. (3) Results: The modified membranes that show osteoblasts with a morphology more similar to the control osteoblasts follow the order: PLGA/PO2/HA > PLGA/PO2/SiO2 > PLGA/PO2/TiO2 > PLGA (p < 0.05). When analysing the cell viability, a higher percentage of viable cells bound to the membranes was observed as follows: PLGA/PO2/SiO2 > PLGA/PO2/HA > PLGA/PO2/TiO2 > PLGA (p < 0.05), with a better energy balance of the cells adhered to the membranes PLGA/PO2/HA and PLGA/PO2/SiO2. (4) Conclusion: The membrane in which osteoblasts show characteristics more similar to the control osteoblasts is the PLGA/PO2/HA, followed by the PLGA/PO2/SiO2.

2.
Med. oral patol. oral cir. bucal (Internet) ; 22(2): e242-e250, mar. 2017. ilus, tab
Artigo em Inglês | IBECS | ID: ibc-161243

RESUMO

BACKGROUND: The use of cold plasmas may improve the surface roughness of poly(lactic-co-glycolic) acid (PLGA) membranes, which may stimulate the adhesion of osteogenic mediators and cells, thus accelerating the biodegradation of the barriers. Moreover, the incorporation of metallic-oxide particles to the surface of these membranes may enhance their osteoinductive capacity. Therefore, the aim of this paper was to evaluate the reliability of a new PLGA membrane after being treated with oxygen plasma (PO2 ) plus silicon dioxide (SiO2 ) layers for guided bone regeneration (GBR) processes. MATERIAL AND METHODS: Circumferential bone defects (diameter: 11 mm; depth: 3 mm) were created on the top of eight experimentation rabbits' skulls and were randomly covered with: (1) PLGA membranes (control), or (2) PLGA/ PO2 /SiO2 barriers. The animals were euthanized two months afterwards. A micromorphologic study was then performed using ROI (region of interest) colour analysis. Percentage of new bone formation, length of mineralised bone, concentration of osteoclasts, and intensity of ostheosynthetic activity were assessed and compared with those of the original bone tissue. The Kruskal-Wallis test was applied for between-group com a significance level of a=0.05 was considered. RESULTS: The PLGA/PO2 /SiO2 membranes achieved the significantly highest new bone formation, length of mineralised bone, concentration of osteoclasts, and ostheosynthetic activity. The percentage of regenerated bone supplied by the new membranes was similar to that of the original bone tissue. Unlike what happened in the control group, PLGA/PO2 /SiO2 membranes predominantly showed bone layers in advanced stages of formation. CONCLUSIONS: The addition of SiO2 layers to PLGA membranes pre-treated with PO2 improves their bone-regeneration potential. Although further research is necessary to corroborate these conclusions in humans, this could be a promising strategy to rebuild the bone architecture prior to rehabilitate edentulous areas


Assuntos
Animais , Coelhos , Regeneração Tecidual Guiada/métodos , Silicones/uso terapêutico , Plasma , Poliglactina 910/uso terapêutico , Modelos Animais de Doenças , Osso e Ossos/anormalidades , Nanocompostos/uso terapêutico
3.
Polymers (Basel) ; 9(9)2017 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-30965714

RESUMO

The novelty of this study is the addition of an ultrathin layer of nanostructured hydroxyapatite (HA) on oxygen plasma modified poly(lactic⁻co⁻glycolic) (PLGA) membranes (PO2) in order to evaluate the efficiency of this novel material in bone regeneration. METHODS: Two groups of regenerative membranes were prepared: PLGA (control) and PLGA/PO2/HA (experimental). These membranes were subjected to cell cultures and then used to cover bone defects prepared on the skulls of eight experimental rabbits. RESULTS: Cell morphology and adhesion of the osteoblasts to the membranes showed that the osteoblasts bound to PLGA were smaller and with a lower number of adhered cells than the osteoblasts bound to the PLGA/PO2/HA membrane (p < 0.05). The PLGA/PO2/HA membrane had a higher percentage of viable cells bound than the control membrane (p < 0.05). Both micro-CT and histological evaluation confirmed that PLGA/PO2/HA membranes enhance bone regeneration. A statistically significant difference in the percentage of osteoid area in relation to the total area between both groups was found. CONCLUSIONS: The incorporation of nanometric layers of nanostructured HA into PLGA membranes modified with PO2 might be considered for the regeneration of bone defects. PLGA/PO2/HA membranes promote higher osteosynthetic activity, new bone formation, and mineralisation than the PLGA control group.

4.
J Oral Implantol ; 41(4): e152-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24552153

RESUMO

Total or partial tissue damage and loss of function in an organ are two of the most serious and costly issues in human health. Initially, these problems were approached through organ and allogenic tissue transplantation, but this option is limited by the scarce availability of donors. In this manner, new bone for restoring or replacing lost and damaged bone tissue is an important health and socioeconomic necessity. Tissue engineering has been used as a strategy during the 21st century for mitigating this need through the development of guided bone regeneration scaffold and composites. In this manner, compared with other traditional methods, bone tissue engineering offers a new and interesting approach to bone repair. The poly-α-hydroxy acids, which include the copolymers of lactic acid and glycolic acid, have been used commonly in the fabrication of these scaffolds. The objective of our article was to review the characteristics and functions of scaffold with biomedical applications, with special interest in scaffold construction using poly(lactic-co-glycolic acid) polymers, in order to update the current methods used for fabrication and to improve the quality of these scaffolds, integrating this information into the context of advancements made in tissue engineering based on these structures. In the future, research into bone regeneration should be oriented toward a fruitful exchange between disciplines involved in tissue engineering, which is coming very close to filling the gaps in our ability to provide implants and restoration of functionality in bone tissue. Overcoming this challenge will provide benefits to a major portion of the population and facilitate substantial improvements to quality of life.


Assuntos
Regeneração Óssea , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Engenharia Tecidual , Glicóis , Humanos , Ácido Láctico , Qualidade de Vida , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...