Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 26(10)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068086

RESUMO

Erica australis plants have been used in infusions and folk medicine for years for its diuretic and antiseptic properties and even for the treatment of infections. In addition, a recently published thorough study on this species has demonstrated its antioxidant, antibiotic, anti-inflammatory, anticarcinogenic and even antitumoral activities. These properties have been associated with the high content of anthocyanins in E. australis leaves and flowers. The aim of the present research is to optimize an ultrasound-assisted extraction methodology for the recovery of the anthocyanins present in E. australis flowers. For that purpose, a Box Behnken design with response surface methodology was employed, and the influence of four variables at different values was determined: namely, the composition of the extraction solvents (0-50% MeOH in water), the pH level of those solvents (3-7), the extraction temperature (10-70 °C), and the sample:solvent ratio (0.5 g:10 mL-0.5 g:20 mL). UHPLC-UV-vis has been employed to quantify the two major anthocyanins detected in the samples. The extraction optimum conditions for 0.5 g samples were: 20 mL of solvent (50% MeOH:H2O) at 5 pH, with a 15 min extraction time at 70 °C. A precision study was performed and the intra-day and inter-day relative standard deviations (RSDs) obtained were 3.31% and 3.52%, respectively. The developed methodology has been successfully applied to other Erica species to validate the suitability of the method for anthocyanin extraction.


Assuntos
Antocianinas/análise , Ericaceae/química , Flores/química , Ultrassom/métodos , Cromatografia Líquida de Alta Pressão , Metanol/química , Padrões de Referência , Temperatura , Fatores de Tempo
2.
Sensors (Basel) ; 15(12): 30443-56, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26690152

RESUMO

This work proposes the use of quartz crystal microbalances (QCMs) as a method to analyze and characterize magnetorheological (MR) fluids. QCM devices are sensitive to changes in mass, surface interactions, and viscoelastic properties of the medium contacting its surface. These features make the QCM suitable to study MR fluids and their response to variable environmental conditions. MR fluids change their structure and viscoelastic properties under the action of an external magnetic field, this change being determined by the particle volume fraction, the magnetic field strength, and the presence of thixotropic agents among other factors. In this work, the measurement of the resonance parameters (resonance frequency and dissipation factor) of a QCM are used to analyze the behavior of MR fluids in static conditions (that is, in the absence of external mechanical stresses). The influence of sedimentation under gravity and the application of magnetic fields on the shifts of resonance frequency and dissipation factor were measured and discussed in the frame of the coupled resonance produced by particles touching the QCM surface. Furthermore, the MR-fluid/QCM system has a great potential for the study of high-frequency contact mechanics because the translational and rotational stiffness of the link between the surface and the particles can be tuned by the magnetic field.

3.
Ultrasonics ; 61: 10-4, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25890635

RESUMO

The effect of particle volume fraction on the microstructure of magnetorheological (MR) fluids has been studied using ultrasonic techniques. When no magnetic field is applied, they behave as slurry. However, when magnetic field is applied, important features regarding the change of the microstructure have been found with the help of ultrasonic waves propagating in the direction of the magnetic field. As the volume fraction increases, a rearrangement of particles which decrease the compressibility of the system is detected; nevertheless, the material behaves as a non-consolidated material. Three different particle volume fraction regions are found identifying a critical particle volume fraction predicted in the literature. Ultrasounds are confirmed as an interesting tool to study MR fluids in static conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...