Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 57(31): 4675-4689, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30004690

RESUMO

Kinases play a critical role in cellular signaling and are dysregulated in a number of diseases, such as cancer, diabetes, and neurodegeneration. Therapeutics targeting kinases currently account for roughly 50% of cancer drug discovery efforts. The ability to explore human kinase biochemistry and biophysics in the laboratory is essential to designing selective inhibitors and studying drug resistance. Bacterial expression systems are superior to insect or mammalian cells in terms of simplicity and cost effectiveness but have historically struggled with human kinase expression. Following the discovery that phosphatase coexpression produced high yields of Src and Abl kinase domains in bacteria, we have generated a library of 52 His-tagged human kinase domain constructs that express above 2 µg/mL of culture in an automated bacterial expression system utilizing phosphatase coexpression (YopH for Tyr kinases and lambda for Ser/Thr kinases). Here, we report a structural bioinformatics approach to identifying kinase domain constructs previously expressed in bacteria and likely to express well in our protocol, experiments demonstrating our simple construct selection strategy selects constructs with good expression yields in a test of 84 potential kinase domain boundaries for Abl, and yields from a high-throughput expression screen of 96 human kinase constructs. Using a fluorescence-based thermostability assay and a fluorescent ATP-competitive inhibitor, we show that the highest-expressing kinases are folded and have well-formed ATP binding sites. We also demonstrate that these constructs can enable characterization of clinical mutations by expressing a panel of 48 Src and 46 Abl mutations. The wild-type kinase construct library is available publicly via Addgene.


Assuntos
Bactérias/metabolismo , Sítios de Ligação , Escherichia coli/metabolismo , Humanos , Fosforilação , Estrutura Secundária de Proteína , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-abl/metabolismo , Quinases da Família src/metabolismo
2.
Neuron ; 90(2): 278-91, 2016 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-27068791

RESUMO

Changes in neuronal activity create local and transient changes in energy demands at synapses. Here we discover a metabolic compartment that forms in vivo near synapses to meet local energy demands and support synaptic function in Caenorhabditis elegans neurons. Under conditions of energy stress, glycolytic enzymes redistribute from a diffuse localization in the cytoplasm to a punctate localization adjacent to synapses. Glycolytic enzymes colocalize, suggesting the ad hoc formation of a glycolysis compartment, or a "glycolytic metabolon," that can maintain local levels of ATP. Local formation of the glycolytic metabolon is dependent on presynaptic scaffolding proteins, and disruption of the glycolytic metabolon blocks the synaptic vesicle cycle, impairs synaptic recovery, and affects locomotion. Our studies indicate that under energy stress conditions, energy demands in C. elegans synapses are met locally through the assembly of a glycolytic metabolon to sustain synaptic function and behavior. VIDEO ABSTRACT.


Assuntos
Caenorhabditis elegans/citologia , Caenorhabditis elegans/enzimologia , Fosfofrutoquinase-1/metabolismo , Terminações Pré-Sinápticas/enzimologia , Terminações Pré-Sinápticas/fisiologia , Estresse Fisiológico , Animais , Caenorhabditis elegans/metabolismo , Endocitose , Hipóxia , Metabolômica , Mutação , Terminações Pré-Sinápticas/metabolismo , Vesículas Sinápticas/enzimologia , Vesículas Sinápticas/metabolismo
3.
Protein Sci ; 23(9): 1197-207, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24917152

RESUMO

EFhd2 is a calcium binding protein, which is highly expressed in the central nervous system and associated with pathological forms of tau proteins in tauopathies. Previous phosphoproteomics studies and bioinformatics analysis suggest that EFhd2 may be phosphorylated. Here, we determine whether Cdk5, a hyperactivated kinase in tauopathies, phosphorylates EFhd2 and influence its known molecular activities. The results indicated that EFhd2 is phosphorylated by brain extract of the transgenic mouse CK-p25, which overexpresses the Cdk5 constitutive activator p25. Consistently, in vitro kinase assays demonstrated that Cdk5, but not GSK3ß, directly phosphorylates EFhd2. Biomass, tandem mass spectrometry, and mutagenesis analyses indicated that Cdk5 monophosphorylates EFhd2 at S74, but not the adjacent S76. Furthermore, Cdk5-mediated phosphorylation of EFhd2 affected its calcium binding activity. Finally, a phospho-specific antibody was generated against EFhd2 phosphorylated at S74 and was used to detect this phosphorylation event in postmortem brain tissue from Alzheimer's disease and normal-aging control cases. Results demonstrated that EFhd2 is phosphorylated in vivo at S74. These results imply that EFhd2's physiological and/or pathological function could be regulated by its phosphorylation state.


Assuntos
Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Quinase 5 Dependente de Ciclina/metabolismo , Animais , Sítios de Ligação , Cálcio/química , Proteínas de Ligação ao Cálcio/genética , Humanos , Camundongos , Camundongos Transgênicos , Mutação , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...