Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Econ Entomol ; 113(1): 390-398, 2020 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-31693095

RESUMO

The fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), is currently the most important maize pest in Mexico. Its control is mainly based on the use of conventional insecticides. Additionally, Bt-maize expressing Cry1F protein represents an alternative to control this pest. We estimated the baseline susceptibility in Mexican populations of S. frugiperda to Cry1F protein. Twenty-eight geographical populations were field collected from Baja California Sur, Chihuahua, Coahuila, Durango, Sinaloa, Sonora, and Tamaulipas states. The F1 neonate larvae of each population were subjected to diet-overlay bioassay. After 7 d of Cry1F exposure, the percent mortality and the percent growth inhibition with respect to the untreated control were recorded (S-LAB). The LC50 ranged from 14.4 (6.3-24.0) (Cajeme 1, Sonora) to 161.8 ng/cm2 (92.0-320) (Ahumada 2, Chihuahua), while the LC95 was between 207.1 (145-363) (Obregón, Sonora) and 1,217 ng/cm2 (510.8-7,390.0) (Río Bravo 2, Tamaulipas). The sensitivity ratios at 50% mortality, (LC50 field/LC50 S-Lab) and 95% mortality were ≤6.45 and ≤5.05-fold, respectively. The 50% growth inhibition (GI50) ranged from 2.8 (0.008-9.3) (Obregón, Sonora) to 42.4 ng/cm2 (3.6-147.0) (Cajeme 1, Sonora). The GI95 was between 75.4 (San Luis Río Colorado, Sonora) to 1,198 ng/cm2 (Cajeme 1, Sonora). The relative inhibition at 50% of the growth, (RI50 = GI50 field /GI50 S-LAB) was ≤3.5 and at 95% (RI95) was ≤1.91-fold. These results indicated susceptibility to Cry1F protein in the evaluated populations of S. frugiperda.


Assuntos
Endotoxinas , Proteínas Hemolisinas/genética , Animais , Proteínas de Bactérias/genética , Colorado , Resistência a Inseticidas , Larva , México , Plantas Geneticamente Modificadas , Spodoptera , Zea mays/genética
2.
Curr Opin Insect Sci ; 15: 131-8, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27436743

RESUMO

Transgenic crops producing Bacillus thuringiensis- (Bt) insecticidal proteins (Bt crops) have provided useful pest management tools to growers for the past 20 years. Planting Bt crops has reduced the use of synthetic insecticides on cotton, maize and soybean fields in 11 countries throughout Latin America. One of the threats that could jeopardize the sustainability of Bt crops is the development of resistance by targeted pests. Governments of many countries require vigilance in measuring changes in Bt-susceptibility in order to proactively implement corrective measures before Bt-resistance is widespread, thus prolonging the usefulness of Bt crops. A pragmatic approach to obtain information on the effectiveness of Bt-crops is directly asking growers, crop consultants and academics about Bt-resistance problems in agricultural fields, first-hand information that not necessarily relies on susceptibility screens performed in laboratories. This type of information is presented in this report. Problematic pests of cotton and soybeans in five Latin American countries currently are effectively controlled by Bt crops. Growers that plant conventional (non-Bt) cotton or soybeans have to spray synthetic insecticides against multiple pests that otherwise are controlled by these Bt crops. A similar situation has been observed in six Latin American countries where Bt maize is planted. No synthetic insecticide applications are used to control corn pests because they are controlled by Bt maize, with the exception of Spodoptera frugiperda. While this insect in some countries is still effectively controlled by Bt maize, in others resistance has evolved and necessitates supplemental insecticide applications and/or the use of Bt maize cultivars that express multiple Bt proteins. Partial control of S. frugiperda in certain countries is due to its natural tolerance to the Bt bacterium. Of the 31 pests targeted and controlled by Bt crops in Latin America, only S. frugiperda has shown tolerance to certain Bt proteins in growers' fields, the most reliable indication of the status of Bt-susceptibility in most of the American continent.


Assuntos
Insetos/fisiologia , Controle Biológico de Vetores/estatística & dados numéricos , Animais , Bacillus thuringiensis/química , Resistência a Inseticidas/genética , América Latina , Plantas Geneticamente Modificadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...