Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 352: 141440, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38368961

RESUMO

The impact of airport activities on air quality, is not sufficiently documented. In order to better understand the magnitude and properly assess the sources of emissions in the sector, it is necessary to establish databases with real data on those pollutants that could have the greatest impact on both health and the environment. Particulate matter (PM), especially ultrafine particles, are a research priority, not only because of its physical properties, but also because of its ability to bind highly toxic compounds such as polycyclic aromatic hydrocarbons (PAHs). Samples of PM were collected in the ambient air around the runways at Barajas International Airport (Madrid, Spain) during October, November and December 2021. Samples were gathered using three different sampling systems and analysed to determine the concentration of PAHs bound to PM. A high-volume air sampler, a Berner low-pressure impactor, and an automated off-line sampler developed in-house were used. The agreement between the samplers was statistically verified from the PM and PAH results. The highest concentration of PM measured was 31 µg m-3, while the concentration of total PAH was 3 ng m-3, both comparable to those recorded in a semi-urban area of Madrid. The PAHs showed a similar profile to the particle size distribution, with a maximum in the 0.27-0.54 µm size range, being preferentially found in the submicron size fractions, with more than 84% and around 15-20% associated to UFPs. It was found that the ratio [PAHs(m)/PM(m)] was around 10-4 in the warmer period (October), whereas it more than doubled in the colder months (November-December). It is significant the shift in the relative distribution of compounds within these two periods, with a notable increase in the 5 and 6 ring proportions in the colder period. This increase was probably due to the additional contribution of other external sources, possibly thermal and related to combustion processes, as supported by the PAH diagnostic ratios.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Atmosféricos/análise , Aeroportos , Monitoramento Ambiental/métodos
2.
Ultrasonics ; 41(4): 277-81, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12782259

RESUMO

Removing very fine particles in the 0.01-1 micro m range generated in diesel combustion is important for air pollution abatement because of the impact such particles have on the environment. By forming larger particles, acoustic agglomeration of submicron particles is presented as a promising process for enhancing the efficiency of the current filtration systems for particle removal. Nevertheless, some authors have pointed out that acoustic agglomeration is much more efficient for larger particles than for smaller particles. This paper studies the effect of humidity on the acoustic agglomeration of diesel exhausts particles in the nanometer size range at 21 kHz. For the agglomeration tests, the experimental facility basically consists of a pilot scale plant with a diesel engine, an ultrasonic agglomeration chamber a dilution system, a nozzle atomizer, and an aerosol sampling and measuring station. The effect of the ultrasonic treatment, generated by a linear array of four high-power stepped-plate transducers on fumes at flow rates of 900 Nm(3)/h, was a small reduction in the number concentration of particles at the outlet of the chamber. However, the presence of humidity raised the agglomeration rate by decreasing the number particle concentration by up to 56%. A numerical study of the agglomeration process as a linear combination of the orthokinetic and hydrodynamic agglomeration coefficients resulting from mutual radiation pressure also found that acoustic agglomeration was enhanced by humidity. Both results confirm the benefit of using high-power ultrasound together with humidity to enhance the agglomeration of particles much smaller than 1 micro m.


Assuntos
Acústica , Umidade , Ultrassom , Emissões de Veículos , Desenho de Equipamento , Tamanho da Partícula , Transdutores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...