Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Reprod Biol Endocrinol ; 13: 24, 2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25880070

RESUMO

BACKGROUND: Relaxin is detected in seminal plasma of many species and its association with sperm motility may be beneficial in some aspects of assisted reproduction. Here, we immunolocalized relaxin receptors and investigated the effects of exogenous relaxin on motility characteristics, viability, and cAMP content of boar spermatozoa after storage. METHODS: Commercial doses of boar semen were obtained on the collection day (Day 0) and kept in shipping containers at room temperature for up to 4 days (Day 4). On Day 0, spermatozoa were fixed for immunofluorescence detection of relaxin receptors RXFP1 and RXFP2 (Experiment 1). Semen aliquots were taken from the same dose at Day 0, Day 1, and Day 2 (Experiment 2a), and Day 2 and Day 4 (Experiment 2b) for analyses. Alive spermatozoa were purified and incubated (1 h-37°C) with 0, 50, or 100 ng relaxin/ml (Experiment 2a) and 0, 100, or 500 ng relaxin/ml (Experiment 2b). Afterward, aliquots of each treatment group were subjected to motility (Experiments 2), viability (Experiment 3) analyses, and cAMP quantification (Experiment 4). Data (3-4 independent replicates) were statistically analyzed (ANOVA followed by pairwise comparisons) and p values less or equal to 0.05 was set for significant difference. RESULTS: Both RXFP1 and RXFP2 receptors were immunolocalized on the entire spermatozoon. Relaxin concentration of 100 ng/ml significantly improved the proportions of motile, progressive, and rapid spermatozoa up to Day 2. Only 500 ng relaxin/ml provided beneficial effects on Day 4. The viability of spermatozoa was not affected by relaxin (100 ng/ml) during storage, but the extent of mitochondria membrane damages was significantly decreased. Furthermore, relaxin did not affect the cAMP contents of spermatozoa during storage, in our conditions. CONCLUSIONS: Relaxin could be a valuable motility booster of stored- or aged-spermatozoa for assisted reproduction techniques. However, the related-intracellular signaling cascades of relaxin in boar spermatozoa remain undetermined.


Assuntos
Relaxina/farmacologia , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Animais , AMP Cíclico/metabolismo , Masculino , Receptores Acoplados a Proteínas G/análise , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/análise , Receptores de Peptídeos/metabolismo , Preservação do Sêmen/métodos , Espermatozoides/metabolismo , Suínos , Fatores de Tempo
2.
Reprod Biol Endocrinol ; 9: 10, 2011 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-21251292

RESUMO

BACKGROUND: Relaxin is a small peptide also known as pregnancy hormone in many mammals. It is synthesized by both male and female tissues, and its secretions are found in various body fluids such as plasma serum, ovarian follicular fluid, utero-oviduct secretions, and seminal plasma of many mammals, including pigs. However, the presence and effects of relaxin in porcine gametes and embryos are still not well-known. The purpose of this study was to assess the presence of relaxin and its receptors RXFP1 and RXFP2 in pig gametes and embryos. METHODS: Immature cumulus-oocyte complexes (COCs) were aspirated from sows' ovaries collected at the abattoir. After in vitro-maturation, COCs were in vitro-fertilized and cultured. For studies, immature and mature COCs were separately collected, and oocytes were freed from their surrounding cumulus cells. Denuded oocytes, cumulus cells, mature boar spermatozoa, zygotes, and embryos (cleaved and blastocysts) were harvested for temporal and spatial gene expression studies. Sections of ovary, granulosa and neonatal porcine uterine cells were also collected to use as controls. RESULTS: Using both semi-quantitative and quantitative PCRs, relaxin transcripts were not detected in all tested samples, while RXFP1 and RXFP2 mRNA were present. Both receptor gene products were found at higher levels in oocytes compared to cumulus cells, irrespective of the maturation time. Cleaved-embryos contained higher levels of RXFP2 mRNA, whereas, blastocysts were characterized by a higher RXFP1 mRNA content. Using western-immunoblotting or in situ immunofluorescence, relaxin and its receptor proteins were detected in all samples. Their fluorescence intensities were consistently more important in mature oocytes than immature ones. The RXFP1 and RXFP2 signal intensities were mostly located in the plasma membrane region, while the relaxin ones appeared homogeneously distributed within the oocytes and embryonic cells. Furthermore, spermatozoa displayed stronger RXFP2 signal than RXFP1 after western-immunoblotting. CONCLUSION: All together, our findings suggest potential roles of relaxin and its receptors during oocyte maturation, early embryo development, and beyond.


Assuntos
Blastocisto/metabolismo , Oócitos/metabolismo , Receptores Acoplados a Proteínas G/biossíntese , Receptores de Peptídeos/biossíntese , Relaxina/biossíntese , Espermatozoides/metabolismo , Animais , Células do Cúmulo , Feminino , Masculino , Sus scrofa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...