Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2732: 103-117, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38060120

RESUMO

Viruses comprise the most abundant genetic material in the biosphere; however, global viral genomic population (virome) has been largely underestimated. Recently, high-throughput sequencing (HTS) has provided a powerful tool for the detection of known viruses and the discovery of novel viral species from environmental and individual samples using metagenomics and ecogenomics approaches, respectively. Viruses with circular DNA single-stranded (ssDNA) genomes belonging to the begomovirus genera (family Geminiviridae) constitute the largest group of emerging plant viruses worldwide. The knowledge of begomoviruses viromes is mostly restricted to crop plant systems; nevertheless, it has been described that noncultivated plants specifically at the interface between wild and cultivated plants are important reservoirs leading to viral evolution and the emergence of new diseases. Here we present a protocol that allows the identification and isolation of known and novel begomoviruses species infecting cultivated and noncultivated plant species. The method consists of circular viral molecules enrichment by rolling circle amplification (RCA) from begomovirus-positive total plant DNA, followed by NGS-based metagenomic sequencing. Subsequently, metagenomic reads are processed for taxonomic classification using Viromescan software and a customized Geminiviridae family database, and begomovirus-related reads are used for contigs assembly and annotation using Spades software and Blastn algorithm, respectively. Then, the obtained begomovirus-related signatures are used as templates for specific primers design and implemented for PCR-based ecogenomic identification of individual samples harboring the corresponding viral species. Lastly, full-length begomovirus genomes are obtained by RCA-based amplification from total plant DNA of selected individual samples, cloning, and viral molecular identity corroborated by Sanger sequencing. Conclusively, the identification and isolation of a novel monopartite begomovirus species native to the New World (NW) named Gallium leaf deformation virus (GLDV) is shown.


Assuntos
Begomovirus , DNA Viral , DNA Viral/genética , Filogenia , Plantas/genética , Begomovirus/genética , Genoma Viral , Metagenômica/métodos , DNA de Plantas , DNA Circular/genética , Doenças das Plantas
2.
Plants (Basel) ; 12(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36903899

RESUMO

Huanglongbing (HLB) is one of the most destructive diseases threatening citriculture worldwide. This disease has been associated with α-proteobacteria species, namely Candidatus Liberibacter. Due to the unculturable nature of the causal agent, it has been difficult to mitigate the disease, and nowadays a cure is not available. MicroRNAs (miRNAs) are key regulators of gene expression, playing an essential role in abiotic and biotic stress in plants including antibacterial responses. However, knowledge derived from non-model systems including Candidatus Liberibacter asiaticus (CLas)-citrus pathosystem remains largely unknown. In this study, small RNA profiles from Mexican lime (Citrus aurantifolia) plants infected with CLas at asymptomatic and symptomatic stages were generated by sRNA-Seq, and miRNAs were obtained with ShortStack software. A total of 46 miRNAs, including 29 known miRNAs and 17 novel miRNAs, were identified in Mexican lime. Among them, six miRNAs were deregulated in the asymptomatic stage, highlighting the up regulation of two new miRNAs. Meanwhile, eight miRNAs were differentially expressed in the symptomatic stage of the disease. The target genes of miRNAs were related to protein modification, transcription factors, and enzyme-coding genes. Our results provide new insights into miRNA-mediated regulation in C. aurantifolia in response to CLas infection. This information will be useful to understand molecular mechanisms behind the defense and pathogenesis of HLB.

3.
Front Microbiol ; 13: 843035, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547137

RESUMO

Begomoviruses (Family Geminiviridae) are a major group of emerging plant viruses worldwide. The knowledge of begomoviruses is mostly restricted to crop plant systems. Nevertheless, it has been described that non-cultivated plants are important reservoirs and vessels of viral evolution that leads to the emergence of new diseases. High-throughput sequencing (HTS) has provided a powerful tool for speeding up the understanding of molecular ecology and epidemiology of plant virome and for discovery of new viral species. In this study, by performing earlier metagenomics library data mining, followed by geminivirus-related signature single plant searching and RCA-based full-length viral genome cloning, and based on phylogenetic analysis, genomes of two isolates of a novel monopartite begomovirus species tentatively named Galium leaf distortion virus (GLDV), which infects non-cultivated endemic plant Galium mexicanum, were identified in Colima, Mexico. Analysis of the genetic structure of both isolates (GLDV-1 and GLDV-2) revealed that the GLDV genome displays a DNA-A-like structure shared with the new world (NW) bipartite begomoviruses. Nonetheless, phylogenetic analysis using representative members of the main begomovirus American clades for tree construction grouped both GLDV isolates in a clade of the monopartite NW begomovirus, Tomato leaf deformation virus (ToLDeV). A comparative analysis of viral replication regulatory elements showed that the GLDV-1 isolate possesses an array and sequence conservation of iterons typical of NW begomovirus infecting the Solanaceae and Fabaceae families. Interestingly, GLDV-2 showed iteron sequences described only in monopartite begomovirus from OW belonging to a sweepovirus clade that infects plants of the Convolvulaceae family. In addition, the rep iteron related-domain (IRD) of both isolates display FRVQ or FRIS amino acid sequences corresponding to NW and sweepobegomovirus clades for GMV-1 and GMV-2, respectively. Finally, the lack of the GLDV DNA-B segment (tested by molecular detection and biological assays using GLDV-1/2 infectious clones) confirmed the monopartite nature of GLDV. This is the first time that a monopartite begomovirus is described in Mexican ecosystems, and "in silico" geometagenomics analysis indicates that it is restricted to a specific region. These data revealed additional complexity in monopartite begomovirus genetics and geographic distribution and highlighted the importance of metagenomic approaches in understanding global virome ecology and evolution.

4.
J Exp Bot ; 72(20): 7316-7334, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34329403

RESUMO

Plants encode numerous intracellular receptors known as nucleotide-binding leucine-rich repeat receptors (NLRs) that recognize pathogen-derived effectors or their activity to activate defenses. miRNAs regulate NLR genes in many species, often triggering the production of phased siRNAs (phasiRNAs). Most such examples involve genes encoding NLRs carrying coiled-coil domains, although a few include genes encoding NLRs carrying a Toll/interleukin-1 domain (TNL). Here, we characterize the role of miR825-5p in Arabidopsis, using a combination of bioinformatics, transgenic plants with altered miRNA levels and/or reporters, small RNAs, and virulence assays. We demonstrate that miR825-5p down-regulates the TNL MIST1 by targeting for endonucleolytic cleavage the sequence coding for TIR2, a highly conserved amino acid motif, linked to a catalytic residue essential for immune function. miR825-5p acts as a negative regulator of basal resistance against Pseudomonas syringae. miR825-5p triggers the production from MIST1 of a large number of phasiRNAs that can mediate cleavage of both MIST1 and additional TNL gene transcripts, potentially acting as a regulatory hub. miR825-5p is expressed in unchallenged leaves and transcriptionally down-regulated in response to pathogen-associated molecular patterns (PAMPs). Our results show that miR825-5p, which is required for full expression of PAMP-triggered immunity, establishes a link between PAMP perception and expression of uncharacterized TNL genes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Genes de Plantas , Doenças das Plantas/genética , Imunidade Vegetal/genética , Plantas Geneticamente Modificadas/genética , Pseudomonas syringae
5.
Front Plant Sci ; 11: 835, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32636860

RESUMO

Geminiviruses are single-stranded DNA plant viruses with circular genomes packaged within geminate particles. Among the Geminiviridae family, Begomovirus and Curtovirus comprise the two best characterized genera. Curtovirus and Old World begomovirus possess similar genome structures with six to seven open-reading frames (ORF). Among them, begomovirus and curtovirus V2 ORFs share the same location in the viral genome, encode proteins of similar size, but show extremely poor sequence homology between the genera. V2 from Beet curly top virus (BCTV), the model species for the Curtovirus genus, as it begomoviral counterpart, suppresses post-transcriptional gene silencing (PTGS) by impairing the RDR6/SGS3 pathway and localizes in the nucleus spanning from the perinuclear region to the cell periphery. By aminoacid sequence comparison we have identified that curtoviral and begomoviral V2 proteins shared two hydrophobic domains and a putative phosphorylation motif. These three domains are essential for BCTV V2 silencing suppression activity, for the proper nuclear localization of the protein and for systemic infection. The lack of suppression activity in the mutated versions of V2 is complemented by the impaired function of RDR6 in Nicotiana benthamiana but the ability of the viral mutants to produce a systemic infection is not recovered in gene silencing mutant backgrounds. We have also demonstrated that, as its begomoviral homolog, V2 from BCTV is able to induce systemic symptoms and necrosis associated with a hypersensitive response-like (HR-like) when expressed from Potato virus X vector in N. benthamiana, and that this pathogenicity activity does not dependent of its ability to supress PTGS.

6.
Viruses ; 12(3)2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32151060

RESUMO

Geminiviruses are important plant pathogens that affect crops around the world. In some geminivirus-host interactions, infected plants show recovery, a phenomenon characterized by symptom disappearance in newly emerging leaves. In pepper-Pepper golden mosaic virus (PepGMV) interaction, the host recovery process involves a silencing mechanism that includes both post-transcriptional (PTGS) and transcriptional (TGS) gene silencing pathways. Under field conditions, PepGMV is frequently found in mixed infections with Pepper huasteco yellow vein virus (PHYVV), another bipartite begomovirus. Mixed infected plants generally show a synergetic phenomenon and do not present recovery. Little is known about the molecular mechanism of this interaction. In the present study, we explored the effect of superinfection by PHYVV on a PepGMV-infected pepper plant showing recovery. Superinfection with PHYVV led to (a) the appearance of severe symptoms, (b) an increase of the levels of PepGMV DNA accumulation, (c) a decrease of the relative methylation levels of PepGMV DNA, and (d) an increase of chromatin activation marks present in viral minichromosomes. Finally, using heterologous expression and silencing suppression reporter systems, we found that PHYVV REn presents TGS silencing suppressor activity, whereas similar experiments suggest that Rep might be involved in suppressing PTGS.


Assuntos
Begomovirus/fisiologia , Capsicum/virologia , Doenças das Plantas/virologia , Superinfecção , Metilação de DNA , DNA Viral , Perfilação da Expressão Gênica , Inativação Gênica , Genoma Viral , Fenótipo
7.
Data Brief ; 29: 105198, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32071978

RESUMO

Mexican lime (Citrus aurantifolia) belongs to the Rutaceae family and nowadays is one of the major commercial citrus crops in different countries. In Mexico, Mexican lime production is impaired by Huanglongbing (HLB) disease associated to Candidatus Liberibacter asiaticus (CLas) bacteria. To date, transcriptomic studies of CLas-Citrus interaction, have been performed mainly in sweet citrus models at symptomatic (early) stage where pleiotropic responses could mask important, pathogen-driven host modulation as well as, host antibacterial responses. Additionally, well-assembled reference transcriptomes for acid limes including C. aurantifolia are not available. The development of improved transcriptomic resources for CLas-citrus pathosystem, including both asymptomatic (early) and symptomatic (late) stages, could accelerate the understanding of the disease. Here, we provide the first transcriptomic analysis from healthy and HLB-infected C. aurantifolia leaves at both asymptomatic and symptomatic stages, using a RNA-seq approach in the Illumina NexSeq500 platform. The construction of the assembled transcriptome was conducted using the predesigned workflow Transflow and a total of 41,522 tentative transcripts (TTs) obtained. These C. aurantifolia TTs were functionally annotated using TAIR10 and UniProtKB databases. All raw reads were deposited in the NCBI SRA with accession numbers SRR10353556, SRR10353558, SRR10353560 and SRR10353562. Overall, this dataset adds new transcriptomic valuable tools for future breeding programs, will allow the design of novel diagnostic molecular markers, and will be an essential tool for studying the HLB disease.

8.
J Agric Food Chem ; 67(33): 9241-9253, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31369258

RESUMO

Antiviral compounds targeting viral replicative processes have been studied as an alternative for the control of begomoviruses. Previously, we have reported that the peptide AmPep1 has strong affinity binding to the replication origin sequence of tomato yellow leaf curl virus (TYLCV). In this study, we describe the mechanism of action of this peptide as a novel alternative for control of plant-infecting DNA viruses. When AmPep1 was applied exogenously to tomato and Nicotiana benthamiana plants infected with TYLCV, a decrease in the synthesis of the two viral DNA strands (CS and VS) was observed, with a consequent delay in the development of disease progress in treated plants. The chemical mechanism of action of AmPep1 was deduced using Raman spectroscopy and molecular modeling showing the formation of chemical interactions such as H bonds and electrostatic interactions and the formation of π-π interactions between both biomolecules contributing to tampering with the viral replication.


Assuntos
Amaranthus/química , Antivirais/química , Antivirais/farmacologia , Begomovirus/efeitos dos fármacos , Peptídeos/química , Peptídeos/farmacologia , RNA Viral/química , Replicação Viral/efeitos dos fármacos , Begomovirus/química , Begomovirus/genética , Begomovirus/fisiologia , Sequências Repetidas Invertidas/efeitos dos fármacos , Solanum lycopersicum/virologia , Doenças das Plantas/virologia , Proteínas de Plantas/química , RNA Viral/genética , Nicotiana/virologia
9.
J Gen Virol ; 98(10): 2607-2614, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28933688

RESUMO

The suppression of gene silencing is a key mechanism for the success of viral infection in plants. DNA viruses from the Geminiviridae family encode several proteins that suppress transcriptional and post-transcriptional gene silencing (TGS/PTGS). In Begomovirus, the most abundant genus of this family, three out of six genome-encoded proteins, namely C2, C4 and V2, have been shown to suppress PTGS, with V2 being the strongest PTGS suppressor in transient assays. Beet curly top virus (BCTV), the model species for the Curtovirus genus, is able to infect the widest range of plants among geminiviruses. In this genus, only one protein, C2/L2, has been described as inhibiting PTGS. We show here that, despite the lack of sequence homology with its begomoviral counterpart, BCTV V2 acts as a potent PTGS suppressor, possibly by impairing the RDR6 (RNA-dependent RNA polymerase 6)/suppressor of gene silencing 3 (SGS3) pathway.


Assuntos
Proteínas de Arabidopsis/genética , Begomovirus/genética , Interferência de RNA/fisiologia , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/genética , Arabidopsis/virologia , Proteínas de Arabidopsis/metabolismo , Doenças das Plantas/virologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/virologia , RNA Polimerase Dependente de RNA/genética
10.
Sci Rep ; 6: 30942, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27476582

RESUMO

Begomovirus ssDNA plant virus (family Geminiviridae) replication within the Bemisia tabaci vector is controversial. Transovarial transmission, alteration to whitefly biology, or detection of viral transcripts in the vector are proposed as indirect evidence of replication of tomato yellow leaf curl virus (TYLCV). Recently, contrasting direct evidence has been reported regarding the capacity of TYLCV to replicate within individuals of B. tabaci based on quantitave PCR approaches. Time-course experiments to quantify complementary and virion sense viral nucleic acid accumulation within B. tabaci using a recently implemented two step qPCR procedure revealed that viral DNA quantities did not increase for time points up to 96 hours after acquisition of the virus. Our findings do not support a recent report claiming TYLCV replication in individuals of B. tabaci.


Assuntos
Begomovirus/fisiologia , Hemípteros/virologia , Insetos Vetores/virologia , Doenças das Plantas/virologia , Vírion/fisiologia , Replicação Viral , Animais , DNA Viral , Hemípteros/genética , Solanum lycopersicum/virologia , Reação em Cadeia da Polimerase em Tempo Real
11.
Sci Rep ; 4: 6438, 2014 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-25241765

RESUMO

Circular single-stranded DNA (ssDNA) viruses are the smallest viruses known to infect eukaryotes. High recombination and mutation rates have conferred these viruses with an evolutionary potential that has facilitated their emergence. Their damaging effects on livestock (circoviruses) and crops (geminiviruses and nanoviruses), and the ubiquity of anelloviruses in human populations and other mammalian species, have resulted in increased interest in better understanding their epidemiology and infection mechanisms. Circular ssDNA viral replication involves the synthesis of dsDNA intermediates containing complementary-sense (CS) and virion-sense (VS) strands. Precise quantification of VS and CS accumulation during viral infections can provide insights into the molecular mechanisms underlying viral replication and the host invasion process. Although qPCR protocols for quantifying viral molecules exist, none of them discriminate VS and CS strands. Here, using a two-step qPCR protocol we have quantified VS and CS molecule accumulation during the infection process of Tomato yellow leaf curl virus (TYLCV) and Tomato yellow leaf curl Sardinia virus (TYLCSV) (genus Begomovirus, family Geminiviridae). Our results show that the VS/CS strand ratio and overall dsDNA amounts vary throughout the infection process. Moreover, we show that these values depend on the virus-host combination, and that most CS strands are present as double-stranded molecules.


Assuntos
DNA Complementar/genética , DNA de Cadeia Simples/genética , Vírion/genética , Replicação Viral/genética , Animais , Begomovirus/genética , Begomovirus/patogenicidade , Geminiviridae/genética , Geminiviridae/patogenicidade , Humanos , Solanum lycopersicum/genética , Solanum lycopersicum/virologia , Doenças das Plantas/genética , Doenças das Plantas/virologia , Folhas de Planta/virologia , Vírion/patogenicidade
12.
New Phytol ; 194(3): 846-858, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22404507

RESUMO

• Geminiviruses are plant viruses with circular, single-stranded (ss) DNA genomes that infect a wide range of species and cause important losses in agriculture. Geminiviruses do not encode their own DNA polymerase, and rely on the host cell machinery for their replication. • Here, we identify a positive effect of the curtovirus Beet curly top virus (BCTV) on the begomovirus Tomato yellow leaf curl Sardinia virus (TYLCSV) infection in Nicotiana benthamiana plants. • Our results show that this positive effect is caused by the promotion of TYLCSV replication by BCTV C2. Transcriptomic analyses of plants expressing C2 unveil an up-regulation of cell cycle-related genes induced on cell cycle re-entry; experiments with two mutated versions of C2 indicate that this function resides in the N-terminal part of C2, which is also sufficient to enhance geminiviral replication. Moreover, C2 expression promotes the replication of other geminiviral species, but not of RNA viruses. • We conclude that BCTV C2 has a novel function in the promotion of viral replication, probably by restoring the DNA replication competency of the infected cells and thus creating a favourable cell environment for viral spread. Because C2 seems to have a broad impact on the replication of geminiviruses, this mechanism might have important epidemiological implications.


Assuntos
Beta vulgaris/virologia , Geminiviridae/genética , Nicotiana/virologia , Doenças das Plantas/virologia , Solanum lycopersicum/virologia , Proteínas Virais/metabolismo , Begomovirus/genética , Begomovirus/fisiologia , Ciclo Celular/genética , Replicação do DNA/genética , DNA Viral/genética , Geminiviridae/fisiologia , Perfilação da Expressão Gênica , Regulação Viral da Expressão Gênica/genética , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Folhas de Planta/virologia , Transcriptoma , Regulação para Cima/genética , Proteínas Virais/genética , Replicação Viral/genética
13.
J Virol ; 83(3): 1332-40, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19019951

RESUMO

RNA silencing in plants is a natural defense system mechanism against invading nucleic acids such as viruses. Geminiviruses, a family of plant viruses characterized by a circular, single-stranded DNA genome, are thought to be both inducers and targets of RNA silencing. Some natural geminivirus-host interactions lead to symptom remission or host recovery, a process commonly associated with RNA silencing-mediated defense. Pepper golden mosaic virus (PepGMV)-infected pepper plants show a recovery phenotype, which has been associated with the presence of virus-derived small RNAs. The results presented here suggest that PepGMV is targeted by both posttranscriptional and transcriptional gene silencing mechanisms. Two types of virus-related small interfering RNAs (siRNAs) were detected: siRNAs of 21 to 22 nucleotides (nt) in size that are related to the coding regions (Rep, TrAP, REn, and movement protein genes) and a 24-nt population primarily associated to the intergenic regions. Methylation levels of the PepGMV A intergenic and coat protein (CP) coding region were measured by a bisulfite sequencing approach. An inverse correlation was observed between the methylation status of the intergenic region and the concentration of viral DNA and symptom severity. The intergenic region also showed a methylation profile conserved in all times analyzed. The CP region, on the other hand, did not show a defined profile, and its methylation density was significantly lower than the one found on the intergenic region. The participation of both PTGS and TGS mechanisms in host recovery is discussed.


Assuntos
Geminiviridae/genética , Inativação Gênica , Processamento Pós-Transcricional do RNA , RNA Viral/genética , Transcrição Gênica , Sequência de Bases , Northern Blotting , Capsicum/virologia , Metilação de DNA , Primers do DNA , Peso Molecular , Reação em Cadeia da Polimerase , RNA Interferente Pequeno , RNA Viral/química , RNA Viral/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...