Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 15(2)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38398927

RESUMO

This article presents a novel technique for a class 2 tensegrity robot, also classified as a soft robot, to increase workspace by increasing the number of geometric equilibrium configurations of the robot. The proposed modification, unlike the strategies reported in the literature, consists of increasing the number of points where the flexible and rigid elements that make up the robot come into contact without the need to increase the number of actuators, the number of flexible elements, or modify the geometry of the rigid elements. The form-finding methodology combines the basic principles of statics with the direct and inverse kinematic position analysis to determine the number of equilibrium positions of the modified robot. In addition, numerical experiments were carried out using the commercial software ANSYS®, R18.2 based on the finite element theory, to corroborate the results obtained with them. With the proposed modification, an increase of 23.369% in the number of geometric equilibrium configurations is achieved, which integrates the workspace of the modified class 2 tensegrity robot. The novel technique applied to tensegrity robots and the tools developed to increase their workspace apply perfectly to scale the robots presented in this paper.

2.
Heliyon ; 10(4): e26363, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38420453

RESUMO

A gains optimizer of a fuzzy controller system for an Unmanned Aerial Vehicle (UAV) based on a metaheuristic algorithm is developed in the present investigation. The contribution of the work is the adjustment by the Genetic Algorithm (GA) to tune the gains at the input of a fuzzy controller. First, a typical fuzzy controller was modeled, designed, and implemented in a mathematical model obtained by Newton-Euler methodology. Subsequently, the control gains were optimized using a metaheuristic algorithm. The control objective is that the UAV consumes the least amount of energy. With this basis, the Genetic Algorithm finds the necessary gains to meet the design parameters. The tests were performed using the Matlab-Simulink environment. The results indicate an improvement, reducing the error in tracking trajectories from 30% in some tasks and following trajectories that could not be completed without a tuned controller in other tasks.

3.
Bioengineering (Basel) ; 11(1)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38247954

RESUMO

Accurate classification of electromyographic (EMG) signals is vital in biomedical applications. This study evaluates different architectures of recurrent neural networks for the classification of EMG signals associated with five movements of the right upper extremity. A Butterworth filter was implemented for signal preprocessing, followed by segmentation into 250 ms windows, with an overlap of 190 ms. The resulting dataset was divided into training, validation, and testing subsets. The Grey Wolf Optimization algorithm was applied to the gated recurrent unit (GRU), long short-term memory (LSTM) architectures, and bidirectional recurrent neural networks. In parallel, a performance comparison with support vector machines (SVMs) was performed. The results obtained in the first experimental phase revealed that all the RNN networks evaluated reached a 100% accuracy, standing above the 93% achieved by the SVM. Regarding classification speed, LSTM ranked as the fastest architecture, recording a time of 0.12 ms, followed by GRU with 0.134 ms. Bidirectional recurrent neural networks showed a response time of 0.2 ms, while SVM had the longest time at 2.7 ms. In the second experimental phase, a slight decrease in the accuracy of the RNN models was observed, standing at 98.46% for LSTM, 96.38% for GRU, and 97.63% for the bidirectional network. The findings of this study highlight the effectiveness and speed of recurrent neural networks in the EMG signal classification task.

4.
Clin Pract ; 13(4): 977-993, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37623269

RESUMO

PURPOSE: this research compared the dissociated phoria at near and distance fixation in free space using the Howell test, alternate Cover test, and Thorington test. METHODS: 220 healthy Mexican children (mean age 8.3±2.5 years) participated in this study. Phorias were quantified at both distances using each test, from the least to the most disruptive. The stereopsis degree and near point of convergence (break/recovery) were analyzed to understand their role in the visual system's sensorimotor balance. RESULTS: statistically significant differences were found among techniques, with a higher congruence for the EF. However, only the Howell and Thorington tests can be interchanged. The break value and near exophoria relate to each other and affect the stereopsis degree, whereas age is associated with the stereopsis degree and break value. CONCLUSIONS: the three techniques cannot be interchanged except for the Howell and Thorington test for the EF at far. The differences in the mode of dissociation could relate to the results.

5.
Micromachines (Basel) ; 14(4)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37420982

RESUMO

This paper proposes a deep learning model based on an artificial neural network with a single hidden layer for predicting the diagnosis of multiple sclerosis. The hidden layer includes a regularization term that prevents overfitting and reduces the model complexity. The purposed learning model achieved higher prediction accuracy and lower loss than four conventional machine learning techniques. A dimensionality reduction method was used to select the most relevant features from 74 gene expression profiles for training the learning models. The analysis of variance test was performed to identify the statistical difference between the mean of the proposed model and the compared classifiers. The experimental results show the effectiveness of the proposed artificial neural network.

6.
Sensors (Basel) ; 23(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37299739

RESUMO

Technology in electric vehicles has increased substantially in the past decade. Moreover, it is projected to grow at record highs in the coming years since these vehicles are needed to reduce the contamination related to the transportation sector. One of the essential elements of an electric car is its battery, due to its cost. Batteries comprise parallel and series-connected cell arrangements to meet the power system requirements. Therefore, they require a cell equalizer circuit to preserve their safety and correct operation. These circuits keep a specific variable of all cells, such as the voltage, within a particular range. Within cell equalizers, capacitor-based ones are very common as they have many desirable characteristics of the ideal equalizer. In this work, an equalizer based on the switched-capacitor is proposed. A switch is added to this technology that allows the disconnection of the capacitor from the circuit. In this way, an equalization process can be achieved without excess transfers. Therefore, a more efficient and faster process can be completed. In addition, it allows another equalization variable to be used, such as the state of charge. This paper studies the operation, power design, and controller design of the converter. Moreover, the proposed equalizer was compared to other capacitor-based architectures. Finally, simulation results were presented to validate the theoretical analysis.


Assuntos
Fontes de Energia Elétrica , Eletricidade , Simulação por Computador , Tecnologia , Meios de Transporte
7.
Sensors (Basel) ; 23(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37299954

RESUMO

PURPOSE: This is an observational, non-invasive study which measures the VEPs of twelve individuals, at baseline, and under the effect of six monochromatic filters used in visual therapy, to understand their effect on neural activity to propose successful treatments. METHODS: Monochromatic filters were chosen to represent the visible light spectrum, going from red to violet color, 440.5-731 nm, and light transmittance from 19 to 89.17%. Two of the participants presented accommodative esotropia. The impact of each filter, differences, and similarities among them, were analyzed using non-parametric statistics. RESULTS: There was an increase on the N75 and P100 latency of both eyes and a decrease was on the VEP amplitude. The neurasthenic (violet), omega (blue), and mu (green) filter had the biggest effects on the neural activity. Changes may primarily be attributable to transmittance (%) for blue-violet colors, wavelength (nm) for yellow-red colors, and a combination of both for the green color. No significant VEPs differences were seen in accommodative strabismic patients, which reflects the good integrity and functionality of their visual pathway. CONCLUSIONS: Monochromatic filters, influenced the axonal activation and the number of fibers that get connected after stimulating the visual pathway, as well as the time needed for the stimulus to reach the visual cortex and thalamus. Consequently, modulations to the neural activity could be due to the visual and non-visual pathway. Considering the different types of strabismus and amblyopia, and their cortical-visual adaptations, the effect of these wavelengths should be explored in other categories of visual dysfunctions, to understand the neurophysiology underlying the changes on neural activity.


Assuntos
Potenciais Evocados Visuais , Córtex Visual , Humanos , Olho , Transtornos da Visão , Córtex Visual/fisiologia , Luz
8.
Bioengineering (Basel) ; 10(2)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36829762

RESUMO

This article evaluates a hip joint socket design by finite element method (FEM). The study was based on the needs and characteristics of a patient with an oncological amputation; however, the solution and the presented method may be generalized for patients with similar conditions. The research aimed to solve a generalized problem, taking a typical case from the study area as a reference. Data were collected on the use of the current improving prosthesis-specifically in interaction with its socket-to obtain information on the new approach design: this step constituted the work's starting point, where the problems to be solved in conventional designs were revealed. Currently, the development of this type of support does not consider the functionality and comfort of the patient. Research has reported that 58% of patients with sockets have rejected their use, because they do not fit comfortably and functionally; therefore, patients' low acceptance or rejection of the use of the prosthesis socket has been documented. In this study, different designs were evaluated, based on the FEM as scientific support for the results obtained, for the development of a new ergonomic fit with a 60% increase in patient compliance, that had correct gait performance when correcting postures, improved fit-user interaction, and that presented an esthetic fit that met the usability factor. The validation of the results was carried out through the physical construction of the prototype. The research showed how the finite element method improved the design, analyzing the structural behavioral, and that it could reduce cost and time instead of generating several prototypes.

9.
Polymers (Basel) ; 14(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36501530

RESUMO

The consumer market has changed drastically in recent times. Consumers are becoming more demanding, and many companies are competing to be market leaders. Therefore, companies must reduce rejects and minimize their operating costs. One problem that arises in producing plastic parts is controlling deformation, mainly in the form of shrinkage due to the material and warpage associated with the geometry of the parts. This work presents a novel extended adaptive weighted sum method (EAAWSM: Extended Adaptive Weighted Summation Method) integrated into a Pareto front model. The performance of this model is evaluated against three other conventional optimization methods-Taguchi-Gray (TG), Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), and Model Optimization by Genetic Algorithm (MOGA)-and compared with EAAWSM. Two response variables and three input factors are considered to be analyzed: material melting temperature, mold temperature, and filling time. Subsequently, the performance is compared and its behavior observed using Moldflow® simulation. The results show that with the EAAWSM method, the shrinkage is 15.75% and the warpage is 3.847 mm, regarding the manufacturing process parameters of a plastic part. This proposed deterministic model is easy to use to optimize two or more output variables, and its results are straightforward and reliable.

10.
Diagnostics (Basel) ; 12(12)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36553037

RESUMO

Glaucoma is an eye disease that gradually deteriorates vision. Much research focuses on extracting information from the optic disc and optic cup, the structure used for measuring the cup-to-disc ratio. These structures are commonly segmented with deeplearning techniques, primarily using Encoder-Decoder models, which are hard to train and time-consuming. Object detection models using convolutional neural networks can extract features from fundus retinal images with good precision. However, the superiority of one model over another for a specific task is still being determined. The main goal of our approach is to compare object detection model performance to automate segment cups and discs on fundus images. This study brings the novelty of seeing the behavior of different object detection models in the detection and segmentation of the disc and the optical cup (Mask R-CNN, MS R-CNN, CARAFE, Cascade Mask R-CNN, GCNet, SOLO, Point_Rend), evaluated on Retinal Fundus Images for Glaucoma Analysis (REFUGE), and G1020 datasets. Reported metrics were Average Precision (AP), F1-score, IoU, and AUCPR. Several models achieved the highest AP with a perfect 1.000 when the threshold for IoU was set up at 0.50 on REFUGE, and the lowest was Cascade Mask R-CNN with an AP of 0.997. On the G1020 dataset, the best model was Point_Rend with an AP of 0.956, and the worst was SOLO with 0.906. It was concluded that the methods reviewed achieved excellent performance with high precision and recall values, showing efficiency and effectiveness. The problem of how many images are needed was addressed with an initial value of 100, with excellent results. Data augmentation, multi-scale handling, and anchor box size brought improvements. The capability to translate knowledge from one database to another shows promising results too.

11.
Micromachines (Basel) ; 13(12)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36557408

RESUMO

Electromyography (EMG) processing is a fundamental part of medical research. It offers the possibility of developing new devices and techniques for the diagnosis, treatment, care, and rehabilitation of patients, in most cases non-invasively. However, EMG signals are random, non-stationary, and non-linear, making their classification difficult. Due to this, it is of vital importance to define which factors are helpful for the classification process. In order to improve this process, it is possible to apply algorithms capable of identifying which features are most important in the categorization process. Algorithms based on metaheuristic methods have demonstrated an ability to search for suitable subsets of features for optimization problems. Therefore, this work proposes a methodology based on genetic algorithms for feature selection to find the parameter space that offers the slightest classification error in 250 ms signal segments. For classification, a support vector machine is used. For this work, two databases were used, the first corresponding to the right upper extremity and the second formed by movements of the right lower extremity. For both databases, a feature space reduction of over 65% was obtained, with a higher average classification efficiency of 91% for the best subset of parameters. In addition, particle swarm optimization (PSO) was applied based on right upper extremity data, obtaining an 88% average error and a 46% reduction for the best subset of parameters. Finally, a sensitivity analysis was applied to the characteristics selected by PSO and genetic algorithms for the database of the right upper extremity, obtaining that the parameters determined by the genetic algorithms show greater sensitivity for the classification process.

12.
Bioengineering (Basel) ; 9(11)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36354537

RESUMO

The aim of this paper is to use the new definition of amblyopia and to define the overall visual performance of healthy controls (HCs), patients with strabismus (PS), and patients with refractive amblyopia (PRA), based on the interaction of selected visual abilities. METHOD: A total of 398 participants were divided in three groups: HCs, PRA, and PS. Variables such as visual acuity, refractive state, degree of stereopsis, phoria state, magnitude, and type of deviation were analyzed using parametric and non-parametric tests. RESULTS: Binocular visual acuity at near is the unique predictor factor for stereopsis in PRA and PS, while age relates to the amount of binocular visual acuity at near, only for PS with stereopsis. Binocular visual acuity at near and phoria states relate to each other in PRA. Binocular visual acuity at near and far in PS is better than PRA, with no differences in the degree of stereopsis. Stereoblind patients were only found among PS (36%). Only (44.9%) of PS had amblyopia. Exophoria predominated among PRA (69.72%) and HCs (78.87%), while exotropia was the predominant deviation in PS (60.54%). Hyperopia was the predominate refractive error among the groups, HCs (74.65%), PRA (79.82%), and PS (59.85%), followed by astigmatism. INTERPRETATION: HCs perform better than PS and PRA. The visual performance of PS with stereopsis and PRA is similar. Binocular visual acuity at near can predict the degree of stereopsis, and stereoblind patients are exclusively related to strabismus.

13.
Micromachines (Basel) ; 13(9)2022 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-36144029

RESUMO

Knowing exactly how much solar radiation reaches a particular area is helpful when planning solar energy installations. In recent years the use of renewable energies, especially those related to photovoltaic systems, has had an impressive up-tendency. Therefore, mechanisms that allow us to predict solar radiation are essential. This work aims to present results for predicting solar radiation using optimization with the Random Forest (RF) algorithm. Moreover, it compares the obtained results with other machine learning models. The conducted analysis is performed in Queretaro, Mexico, which has both direct solar radiation and suitable weather conditions more than three quarters of the year. The results show an effective improvement when optimizing the hyperparameters of the RF and Adaboost models, with an improvement of 95.98% accuracy compared to conventional methods such as linear regression, with 54.19%, or recurrent networks, with 53.96%, without increasing the computational time and performance requirements to obtain the prediction. The analysis was successfully repeated in two different scenarios for periods in 2020 and 2021 in Juriquilla. The developed method provides robust performance with similar results, confirming the validity and effectiveness of our approach.

14.
Sensors (Basel) ; 22(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36081100

RESUMO

The direct integration of paper-based microfluidic fuel cells (µFC's) toward creating autonomous lateral flow assays has attracted attention. Here, we show that an air-breathing paper-based µFC could be used as a power supply in pregnancy tests by oxidizing the human urine used for the diagnosis. We present an air-breathing paper-based µFC connected to a pregnancy test, and for the first time, as far as we know, it is powered by human urine without needing any external electrolyte. It uses TiO2-Ni as anode and Pt/C as cathode; the performance shows a maximum value of voltage and current and power densities of ∼0.96 V, 1.00 mA cm-2, and 0.23 mW cm-2, respectively. Furthermore, we present a simple design of a paper-based µFC's stack powered with urine that shows a maximum voltage and maximum current and power densities of ∼1.89 V, 2.77 mA cm-2 and 1.38 mW cm-2, respectively, which powers the display of a pregnancy test allowing to see the analysis results.


Assuntos
Microfluídica , Testes de Gravidez , Fontes de Energia Elétrica , Eletrodos , Feminino , Humanos , Oxirredução , Gravidez
15.
Micromachines (Basel) ; 13(8)2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-36014187

RESUMO

Brushed (B) and Brushless (BL) DC motors constitute the cornerstone of mechatronic systems regardless their sizes (including miniaturized), in which both position and speed control tasks require the application of sophisticated algorithms. This manuscript addresses the initial step using time series analysis to forecast Back EMF values, thereby enabling the elaboration of real-time adaptive fine-tuning strategies for PID controllers in such a control system design problem. An Auto-Regressive Moving Average (ARMA) model is developed to estimate the DC motor parameter, which evolves in time due to the system's imperfection (i.e., unpredictable duty cycle) and influences the closed-loop performance. The methodology is executed offline; thus, it highlights the applicability of collected BDC motor measurements in time series analysis. The proposed method updates the PID controller gains based on the Simulink ™ controller tuning toolbox. The contribution of this approach is shown in a comparative study that indicates an opportunity to use time series analysis to forecast DC motor parameters, to re-tune PID controller gains, and to obtain similar performance under the same perturbation conditions. The research demonstrates the practical applicability of the proposed method for fine-tuning/re-tuning controllers in real-time. The results show the inclusion of the time series analysis to recalculate controller gains as an alternative for adaptive control.

16.
Sensors (Basel) ; 22(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35684670

RESUMO

This article presents the use of the equations of the dynamic response to a step input in metaheuristic algorithm for the parametric estimation of a motor model. The model equations are analyzed, and the relations in steady-state and transient-state are used as delimiters in the search. These relations reduce the number of random parameters in algorithm search and reduce the iterations to find an acceptable result. The tests were implemented in two motors of known parameters to estimate the performance of the modifications in the algorithms. Tests were carried out with three algorithms (Gray Wolf Optimizer, Jaya Algorithm, and Cuckoo Search Algorithm) to prove that the benefits can be extended to various metaheuristics. The search parameters were also varied, and tests were developed with different iterations and populations. The results show an improvement for all the algorithms used, achieving the same error as the original method but with 10 to 50% fewer iterations.


Assuntos
Algoritmos , Modelos Teóricos
17.
Micromachines (Basel) ; 13(6)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35744504

RESUMO

Artificial intelligence techniques for pneumatic robot manipulators have become of deep interest in industrial applications, such as non-high voltage environments, clean operations, and high power-to-weight ratio tasks. The principal advantages of this type of actuator are the implementation of clean energies, low cost, and easy maintenance. The disadvantages of working with pneumatic actuators are that they have non-linear characteristics. This paper proposes an intelligent controller embedded in a programmable logic device to minimize the non-linearities of the air behavior into a 3-degrees-of-freedom robot with pneumatic actuators. In this case, the device is suitable due to several electric valves, direct current motors signals, automatic controllers, and several neural networks. For every degree of freedom, three neurons adjust the gains for each controller. The learning process is constantly tuning the gain value to reach the minimum of the mean square error. Results plot a more appropriate behavior for a transitive time when the neurons work with the automatic controllers with a minimum mean error of ±1.2 mm.

18.
Micromachines (Basel) ; 13(6)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35744557

RESUMO

This article explores the patents of solar energy technologies in the organic Rankine cycle (ORC) applications. The conversion of low-quality thermal energy into electricity is one of the main characteristics of an ORC, making efficient and viable technologies available today. However, only a few and outdated articles that analyze patents that use solar energy technologies in ORC applications exist. This leads to a lack of updated information regarding the number of published patents, International Patent Classification (IPC) codes associated with them, technology life cycle status, and the most relevant patented developments. Thus, this article conducts a current investigation of patents published between January 2010 and May 2022 using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology and keywords. One thousand two hundred ninety-nine patents were obtained as part of the study and classified in F and Y groups of the IPC. The time-lapse analyzed was between January 2010 and May 2022. In 2014 and 2015, a peak of published patents was observed. China (CN) was the country that published the most significant number of patents worldwide. However, the European Patent Office (EP), the World Intellectual Property Organization (WO), and the United States (US) publish the patents with the highest number of patent citations. Furthermore, the possible trend regarding the development of patents for each technology is presented. A high-performance theoretical ORC plant based on the patent information analyzed by this article is introduced. Finally, exploration of IPC revealed 17 codes related to solar energy technologies in ORC applications not indexed in the main search.

19.
Sensors (Basel) ; 22(12)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35746098

RESUMO

Data acquisition and processing are areas of research in fault diagnosis in rotating machinery, where the rotor is a fundamental component that benefits from dynamic analysis. Several intelligent algorithms have been used to optimize investigations of this nature. However, the Jaya algorithm has only been applied in a few instances. In this study, measurements of the amplitude of vibration in the radial direction in a gas microturbine were analyzed using different rotational frequency and temperature levels. A response surface model was generated using a polynomial tuned by the Jaya metaheuristic algorithm applied to the averages of the measurements, and another on the whole sample, to determine the optimal operating conditions and the effects that temperature produces on vibrations. Several tests with different orders of the polynomial were carried out. The fifth-order polynomial performed better in terms of MSE. The response surfaces were presented fitting the measured points. The roots of the MSE, as a percentage, for the 8-point and 80-point fittings were 3.12% and 10.69%, respectively. The best operating conditions were found at low and high rotational frequencies and at a temperature of 300 ∘C. High temperature conditions produced more variability in the measurements and caused the minimum value of the vibration amplitude to change in terms of rotational frequency. Where it is feasible to undertake experiments with minimal variations, the model that uses only the averages can be used. Future work will examine the use of different error functions which cannot be conveniently implemented in a common second-order model. The proposed method does not require in-depth mathematical analysis or high computational capabilities.

20.
Micromachines (Basel) ; 13(4)2022 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35457891

RESUMO

Performing control is necessary for processes where a variable needs to be regulated. Even though conventional techniques are widely preferred for their implementation, they present limitations in systems in which the parameters vary over time, which is why methods that use artificial intelligence algorithms have been developed to improve the results given by the controller. This work focuses on implementing a position controller based on fuzzy logic in a real platform that consists of the base of a 3D printer, the direct current motor that modifies the position in this base, the power stage and the acquisition card. The contribution of this work is the use of genetic algorithms to optimize the values of the membership functions in the fuzzification of the input variables to the controller. Four scenarios were analyzed, in which the trajectory and the weight of the system were modified. The results obtained in the experimentation show that the rising and setting times of the proposed controller are better than those obtained by similar techniques that were previously developed in the literature. It was also verified that the proposed technique reached the desired values even when the initial conditions in the system changed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...