Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinformatics ; 39(5)2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37086439

RESUMO

MOTIVATION: The detection of distinct cellular identities is central to the analysis of single-cell RNA sequencing (scRNA-seq) experiments. However, in perturbation experiments, current methods typically fail to correctly match cell states between conditions or erroneously remove population substructure. Here, we present the novel, unsupervised algorithm Identify Cell states Across Treatments (ICAT) that employs self-supervised feature weighting and control-guided clustering to accurately resolve cell states across heterogeneous conditions. RESULTS: Using simulated and real datasets, we show ICAT is superior in identifying and resolving cell states compared with current integration workflows. While requiring no a priori knowledge of extant cell states or discriminatory marker genes, ICAT is robust to low signal strength, high perturbation severity, and disparate cell type proportions. We empirically validate ICAT in a developmental model and find that only ICAT identifies a perturbation-unique cellular response. Taken together, our results demonstrate that ICAT offers a significant improvement in defining cellular responses to perturbation in scRNA-seq data. AVAILABILITY AND IMPLEMENTATION: https://github.com/BradhamLab/icat.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Algoritmos , Análise por Conglomerados
2.
Dev Biol ; 493: 89-102, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36368523

RESUMO

Ethanol is a known vertebrate teratogen that causes craniofacial defects as a component of fetal alcohol syndrome (FAS). Our results show that sea urchin embryos treated with ethanol similarly show broad skeletal patterning defects, potentially analogous to the defects associated with FAS. The sea urchin larval skeleton is a simple patterning system that involves only two cell types: the primary mesenchymal cells (PMCs) that secrete the calcium carbonate skeleton and the ectodermal cells that provide migratory, positional, and differentiation cues for the PMCs. Perturbations in RA biosynthesis and Hh signaling pathways are thought to be causal for the FAS phenotype in vertebrates. Surprisingly, our results indicate that these pathways are not functionally relevant for the teratogenic effects of ethanol in developing sea urchins. We found that developmental morphology as well as the expression of some ectodermal and PMC genes was delayed by ethanol exposure. Temporal transcriptome analysis revealed significant impacts of ethanol on signaling and metabolic gene expression, and a disruption in the timing of GRN gene expression that includes both delayed and precocious gene expression throughout the specification network. We conclude that the skeletal patterning perturbations in ethanol-treated embryos likely arise from a loss of temporal synchrony within and between the instructive and responsive tissues.


Assuntos
Etanol , Células-Tronco Mesenquimais , Animais , Etanol/toxicidade , Regulação da Expressão Gênica no Desenvolvimento , Ouriços-do-Mar , Ectoderma , Células-Tronco Mesenquimais/metabolismo , Embrião não Mamífero/metabolismo
3.
Commun Biol ; 4(1): 1404, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34916615

RESUMO

We provide a functional characterization of transcription factor NF-κB in protists and provide information about the evolution and diversification of this biologically important protein. We characterized NF-κB in two protists using phylogenetic, cellular, and biochemical techniques. NF-κB of the holozoan Capsaspora owczarzaki (Co) has an N-terminal DNA-binding domain and a C-terminal Ankyrin repeat (ANK) domain, and its DNA-binding specificity is more similar to metazoan NF-κB proteins than to Rel proteins. Removal of the ANK domain allows Co-NF-κB to enter the nucleus, bind DNA, and activate transcription. However, C-terminal processing of Co-NF-κB is not induced by IκB kinases in human cells. Overexpressed Co-NF-κB localizes to the cytoplasm in Co cells. Co-NF-κB mRNA and DNA-binding levels differ across three Capsaspora life stages. RNA-sequencing and GO analyses identify possible gene targets of Co-NF-κB. Three NF-κB-like proteins from the choanoflagellate Acanthoeca spectabilis (As) contain conserved Rel Homology domain sequences, but lack C-terminal ANK repeats. All three As-NF-κB proteins constitutively enter the nucleus of cells, but differ in their DNA-binding abilities, transcriptional activation activities, and dimerization properties. These results provide a basis for understanding the evolutionary origins of this key transcription factor and could have implications for the origins of regulated immunity in higher taxa.


Assuntos
Coanoflagelados/genética , Evolução Molecular , NF-kappa B/genética , Proteínas de Protozoários/genética , Fatores de Transcrição/genética , Coanoflagelados/metabolismo , NF-kappa B/metabolismo , Proteínas de Protozoários/metabolismo , Especificidade da Espécie , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...