Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38985418

RESUMO

Mining is a major economic activity in many developing countries. However, it disturbs the environment, producing enormous quantities of waste, known as mine tailings, which can have deleterious environmental impact, due to their high heavy metals (HM) content. Often, foundation species that establish on mine tailings are good candidates to study the effects of HM bioaccumulation at different levels of biological organization. Prosopis laevigata is considered a HM hyperaccumulator which presents attributes of a foundation species (FS) and establishes naturally on mine tailings. We evaluated the bioaccumulation of Cu, Pb, and Zn in P. laevigata foliar tissue, the leaf micro- and macro-morphological characters, DNA damage, and population genetic effects. In total, 80 P. laevigata individuals (20/site) belonging to four populations: The individuals from both sites (exposed and reference) bioaccumulated HMs (Pb > Cu > Zn). However, in the exposed individuals, Pb and Cu bioaccumulation was significantly higher. Also, a significant effect of macro- and micro-morphological characters was registered, showing significantly lower values in individuals from the exposed sites. In addition, we found significant differences in genotoxic damage in P. laevigata individuals, between the exposed and reference sites. In contrast, for the micro-morphological characters, none of the analyzed metals had any influence. P. laevigata did not show significant differences in the genetic structure and diversity between exposed and reference populations. However, four haplotypes and four private alleles were found in the exposed populations. Since P. laevigata is a species that establishes naturally in polluted sites and bioaccumulates HM in its foliar tissues, the resulting genetic, individual and population effects have not been severe enough to show detrimental effects; hence, P. laevigata can be a useful tool in phytoremediation strategies for soils polluted with Pb and Cu, maintaining its important ecological functions.

2.
Environ Sci Pollut Res Int ; 30(13): 38982-38999, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36595178

RESUMO

As a result of mining activities, waste of different types is generated. One example is mine tailings that contain potentially toxic elements such as heavy metals that negatively impact the environment and human health. Hence, developing treatments to guarantee its efficient elimination from the environment is necessary. Among these treatments, phytoremediation takes advantage of the potential of different plant species, to remove heavy metals from polluted sites. Gliricidia sepium is a tree that grows up to 15 m high and distributed from southern Mexico to Central America. This study evaluates the heavy metal bioaccumulation capacity in roots and leaves, and the effect of such bioaccumulation on fifteen macro- and one micro-morphological characters of G. sepium growing during 360 days in control, and in mine tailing substrates. G. sepium individuals growing on the exposed substrate registered the following average heavy metal bioaccumulation pattern in the roots: Fe > Pb > Zn > Cu, while in the leaf tissue, the bioaccumulation pattern was Cu > Fe > Pb > Zn. Macro- and micro-morphological characters evaluated in G. sepium decreased in plants exposed to metals. The translocation factor showed that Cu and Pb registered average values greater than 1. In conclusion, G. sepium is a species with potential for the phytoremediation of soils contaminated with Fe, Cu, and Pb, and for phytostabilizing soils polluted with Fe, Pb, Zn, and Cu, along with its ability to establish itself and turn into an abundant plant species in polluted sites, its capacity to bioaccumulate heavy metals in roots and leaves, and its high rate of HM translocation.


Assuntos
Fabaceae , Metais Pesados , Poluentes do Solo , Humanos , Bioacumulação , Chumbo , Poluentes do Solo/análise , Metais Pesados/análise , Plantas , Biodegradação Ambiental , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...