Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Food Biochem ; 43(7): e12896, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31353692

RESUMO

Maize silks have been used in Mexico for centuries as a natural-based treatment for various illnesses, including obesity and diabetes. It has been shown in mice that intake of maize silk extracts reduces the levels of blood glucose. However, it is not clear how or what maize silk compounds are involved in such an effect. A hypothesized mechanism is that some maize silk compounds can inhibit carbohydrate hydrolyzing enzymes like α-glucosidases. This work aimed to assess the capability of both saccharides and phenolic compounds from maize silks to inhibit intestinal α-glucosidases. Results showed that saccharides from maize silks did not produce inhibition on intestinal α-glucosidases, but phenolics did. Maize silk phenolics increased the value of Km significantly and decreased the Vmax slightly, indicating a mixed inhibition of α-glucosidases. According to the molecular docking analysis, the phenolics maysin, methoxymaysin, and apimaysin, which had the highest predicted binding energies, could be responsible for the inhibition of α-glucosidases. PRACTICAL APPLICATIONS: The International Diabetes Federation (IDF) reported in 2017 that diabetes affects over 424 million people worldwide, and caused 4 million deaths. Non-insulin-dependent diabetes or type 2 diabetes mellitus (T2DM) accounts for ∼90% of cases. T2DM is characterized by insulin resistance and pancreatic ß-cell failure. Therapy for T2DM includes the use of sulfonylureas, thiazolidinediones, biguanides, and α-glucosidase inhibitors. Regarding the α-glucosidase inhibitors, only few are commercially available, and these have been associated with severe gastrointestinal side effects. This work aimed to assess the capability of both saccharides and phenolic compounds from maize silks to inhibit intestinal α-glucosidases. Results from this work evidenced that maize silk polyphenols acted as effective inhibitors of intestinal rat α-glucosidases. Computational analysis of maize silk polyphenols indicated that maysin, a particular flavonoid from maize silks, could be responsible for the inhibition of α-glucosidases.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Flores/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Hipoglicemiantes/farmacologia , Fenóis/farmacologia , Zea mays/química , alfa-Glucosidases/metabolismo , Glicemia/efeitos dos fármacos , Flavonoides/química , Flavonoides/farmacologia , Glucosídeos/química , Glucosídeos/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Hipoglicemiantes/química , Intestinos/enzimologia , Cinética , Simulação de Acoplamento Molecular , Fenóis/química , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Polifenóis/química , Polifenóis/farmacologia
2.
J Org Chem ; 83(10): 5347-5364, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29697257

RESUMO

An efficient and alternative synthesis of exo-imidazolidin-2-one dienes is described. A condensation reaction was carried out with bis-imino derivatives, diacetyl, and triphosgene, affording symmetrically N, N-disubstituted dienes. The use of alkyl methyl α-diketones led to the formation of nonsymmetrical dienes, which underwent isomerization to provide more stable inner-outer-ring dienes under Lewis acid conditions. Evaluation was made of the reactivity as well as regio- and stereoselectivity of these dienes in Diels-Alder reactions. They proved to be highly reactive and selective. DFT calculations of the transition states accounted for their behavior.

3.
Chem Cent J ; 7(1): 17, 2013 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-23351546

RESUMO

BACKGROUND: Chalcones are ubiquitous natural compounds with a wide variety of reported biological activities, including antitumoral, antiviral and antimicrobial effects. Furthermore, chalcones are being studied for its potential use in organic electroluminescent devices; therefore the description of their spectroscopic properties is important to elucidate the structure of these molecules. One of the main techniques available for structure elucidation is the use of Nuclear Magnetic Resonance Spectroscopy (NMR). Accordingly, the prediction of the NMR spectra in this kind of molecules is necessary to gather information about the influence of substituents on their spectra. RESULTS: A novel substituted chalcone has been synthetized. In order to identify the functional groups present in the new synthesized compound and confirm its chemical structure, experimental and theoretical 1H-NMR and 13C-NMR spectra were analyzed. The theoretical molecular structure and NMR spectra were calculated at both the Hartree-Fock and Density Functional (meta: TPSS; hybrid: B3LYP and PBE1PBE; hybrid meta GGA: M05-2X and M06-2X) levels of theory in combination with a 6-311++G(d,p) basis set. The structural parameters showed that the best method for geometry optimization was DFT:M06-2X/6-311++G(d,p), whereas the calculated bond angles and bond distances match experimental values of similar chalcone derivatives. The NMR calculations were carried out using the Gauge-Independent Atomic Orbital (GIAO) formalism in a DFT:M06-2X/6-311++G(d,p) optimized geometry. CONCLUSION: Considering all HF and DFT methods with GIAO calculations, TPSS and PBE1PBE were the most accurate methods used for calculation of 1H-NMR and 13C-NMR chemical shifts, which was almost similar to the B3LYP functional, followed in order by HF, M05-2X and M06-2X methods. All calculations were done using the Gaussian 09 software package. Theoretical calculations can be used to predict and confirm the structure of substituted chalcones with good correlation with the experimental data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...