Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38629372

RESUMO

BACKGROUND: Human cervix adenocarcinoma (CC) caused by papillomavirus is the third most common cancer among female malignant tumors. Bioactive compounds such as cyclodipeptides (CDPs) possess cytotoxic effects in human cervical cancer HeLa cells mainly by blocking the PI3K/Akt/mTOR pathway and subsequently inducing gene expression by countless transcription regulators. However, the upstream elements of signaling pathways have not been well studied. METHODS: To elucidate the cytotoxic and antiproliferative responses of the HeLa cell line to CDPs by a transcriptomic analysis previously carried out, we identified by immunochemical analyses, differential expression of genes related to the hepatocyte growth factor/mesenchymal-epithelial transition factor (HGF/MET) receptors. Furthermore, molecular docking was carried out to evaluate the interactions of CDPs with the EGF and MET substrate binding sites. RESULTS: Immunochemical and molecular docking analyses suggest that the HGF/MET receptor participation in CDPs cytotoxic effect was independent of the protein expression levels. However, protein modulation of downstream Met-targets occurred due to the inhibition of phosphorylation of the HGF/MET receptor. Results suggest that the antiproliferative and cytotoxicity of CDPs in HeLa cells involve the HGF/MET receptor upstream of PI3K/Akt/mTOR pathway; assays with the human breast cancer MCF-7 and MDA-MB-231cell lines supported the finding. CONCLUSION: Data provide new insights into the molecular mechanisms involved in CDPs cytotoxicity and antiproliferative effects, suggesting that the signal transduction mechanism may be related to the inhibition of the phosphorylation of the EGF/MET receptor at the level of substrate binding site by an inhibition mechanism similar to that of Gefitinib and foretinib anti-neoplastic drugs.

2.
Arch Biochem Biophys ; 743: 109667, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37327962

RESUMO

The marine archaeon Methanosarcina acetivorans contains a putative NAD + -independent d-lactate dehydrogenase (D-iLDH/glycolate oxidase) encoded by the MA4631 gene, belonging to the FAD-oxidase C superfamily. Nucleotide sequences similar to MA4631 gene, were identified in other methanogens and Firmicutes with >90 and 35-40% identity, respectively. Therefore, the lactate metabolism in M. acetivorans is reported here. Cells subjected to intermittent pulses of oxygen (air-adapted; AA-Ma cells) consumed lactate only in combination with acetate, increasing methane production and biomass yield. In AA-Ma cells incubated with d-lactate plus [14C]-l-lactate, the radioactive label was found in methane, CO2 and glycogen, indicating that lactate metabolism fed both methanogenesis and gluconeogenesis. Moreover, d-lactate oxidation was coupled to O2-consumption which was sensitive to HQNO; also, AA-Ma cells showed high transcript levels of gene dld and those encoding subunits A (MA1006) and B (MA1007) of a putative cytochrome bd quinol oxidase, compared to anaerobic control cells. An E. coli mutant deficient in dld complemented with the MA4631 gene, grew with d-lactate as carbon source and showed membrane-bound d-lactate:quinone oxidoreductase activity. The product of the MA4631 gene is a FAD-containing monomer showing activity of iLDH with preference to d-lactate. The results suggested that air adapted M. acetivorans is able to co-metabolize lactate and acetate with associated oxygen consumption by triggering the transcription and synthesis of the D-iLDH and a putative cytochrome bd: methanophenazine (quinol) oxidoreductase. Biomass generation and O2 consumption, suggest a potentially new oxygen detoxification mechanism coupled to energy conservation in this methanogen.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons , Oxigênio , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Oxigênio/metabolismo , Methanosarcina/genética , Methanosarcina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Oxirredutases/metabolismo , Metano/metabolismo , Citocromos/metabolismo , Acetatos , Lactatos/metabolismo
3.
Proteomes ; 11(2)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37092456

RESUMO

Cellular interactions within the bone marrow microenvironment modulate the properties of subsets of leukemic cells leading to the development of drug-resistant phenotypes. The intercellular transfer of proteins and organelles contributes to this process but the set of transferred proteins and their effects in the receiving cells remain unclear. This study aimed to detect the intercellular protein transfer from mouse bone marrow stromal cells (OP9 cell line) to human T-lymphoblasts (CCRF-CEM cell line) using nanoLC-MS/MS-based shotgun proteomics in a 3D co-culture system. After 24 h of co-culture, 1513 and 67 proteins from human and mouse origin, respectively, were identified in CCRF-CEM cells. The presence of mouse proteins in the human cell line, detected by analyzing the differences in amino acid sequences of orthologous peptides, was interpreted as the result of intercellular transfer. The transferred proteins might have contributed to the observed resistance to vincristine, methotrexate, and hydrogen peroxide in the co-cultured leukemic cells. Our results suggest that shotgun proteomic analyses of co-cultured cells from different species could be a simple option to get a preliminary survey of the proteins exchanged among interacting cells.

4.
Biomedicines ; 10(8)2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-36009394

RESUMO

Quorum sensing (QS) and type III secretion systems (T3SSs) are among the most attractive anti-virulence targets for combating multidrug-resistant pathogenic bacteria. Some halogenated furanones reduce QS-associated virulence, but their role in T3SS inhibition remains unclear. This study aimed to assess the inhibition of these two systems on Pseudomonas aeruginosa virulence. The halogenated furanones (Z)-4-bromo-5-(bromomethylene)-2(5H) (C-30) and 5-(dibromomethylene)-2(5H) (named hereafter GBr) were synthesized, and their ability to inhibit the secretion of type III exoenzymes and QS-controlled virulence factors was analyzed in P. aeruginosa PA14 and two clinical isolates. Furthermore, their ability to prevent bacterial establishment was determined in a murine cutaneous abscess model. The GBr furanone reduced pyocyanin production, biofilm formation, and swarming motility in the same manner or more effectively than C-30. Moreover, both furanones inhibited the secretion of ExoS, ExoT, or ExoU effectors in all tested strains. The administration of GBr (25 and 50 µM) to CD1 mice infected with the PA14 strain significantly decreased necrosis formation in the inoculation zone and the systemic spread of bacteria more efficiently than C-30 (50 µM). Molecular docking analysis suggested that the gem position of bromine in GBr increases its affinity for the active site of the QS LasR regulator. Overall, our findings showed that the GBr furanone displayed efficient multi-target properties that may favor the development of more effective anti-virulence therapies.

5.
J Cell Biochem ; 123(4): 701-718, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34931340

RESUMO

Acetylation of proteins seems a widespread process found in the three domains of life. Several studies have shown that besides histones, acetylation of lysine residues also occurs in non-nuclear proteins. Hence, it has been suggested that this covalent modification is a mechanism that might regulate diverse metabolic pathways by modulating enzyme activity, stability, and/or subcellular localization or interaction with other proteins. However, protein acetylation levels seem to have low correlation with modification of enzyme activity and pathway fluxes. In addition, the results obtained with mutant enzymes that presumably mimic acetylation have frequently been over-interpreted. Moreover, there is a generalized lack of rigorous enzyme kinetic analysis in parallel to acetylation level determinations. The purpose of this review is to analyze the current findings on the impact of acetylation on metabolic enzymes and its repercussion on metabolic pathways function/regulation.


Assuntos
Redes e Vias Metabólicas , Processamento de Proteína Pós-Traducional , Acetilação , Histonas , Cinética
6.
Arch Biochem Biophys ; 669: 39-49, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31128085

RESUMO

To enhance our understanding of the control of archaeal carbon central metabolism, a detailed analysis of the regulation mechanisms of both fructose1,6-bisphosphatase (FruBPase) and ADP-phosphofructokinase-1 (ADP-PFK1) was carried out in the methanogen Methanosarcina acetivorans. No correlations were found among the transcript levels of the MA_1152 and MA_3563 (frubpase type II and pfk1) genes, the FruBPase and ADP-PFK1 activities, and their protein contents. The kinetics of the recombinant FruBPase II and ADP-PFK1 were hyperbolic and showed simple mixed-type inhibition by AMP and ATP, respectively. Under physiological metabolite concentrations, the FruBPase II and ADP-PFK1 activities were strongly modulated by their inhibitors. To assess whether these enzymes were also regulated by a phosphorylation/dephosphorylation process, the recombinant enzymes and cytosolic-enriched fractions were incubated in the presence of commercial protein phosphatase or protein kinase. De-phosphorylation of ADP-PFK1 slightly decreased its activity (i.e. Vmax) and did not change its kinetic parameters and oligomeric state. Thus, the data indicated a predominant metabolic regulation of both FruBPase and ADP-PFK1 activities by adenine nucleotides and suggested high degrees of control on the respective pathway fluxes.


Assuntos
Proteínas Arqueais/metabolismo , Frutose-Bifosfatase/metabolismo , Methanosarcina/metabolismo , Fosfofrutoquinase-1/metabolismo , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Proteínas Arqueais/genética , Proteínas Arqueais/isolamento & purificação , Galinhas , Frutose-Bifosfatase/genética , Frutose-Bifosfatase/isolamento & purificação , Frutosefosfatos/metabolismo , Genes Arqueais , Cinética , Methanosarcina/genética , Fosfofrutoquinase-1/genética , Fosfofrutoquinase-1/isolamento & purificação , Fosforilação , Inibidores de Proteínas Quinases/metabolismo , Processamento de Proteína Pós-Traducional
7.
Cell Biol Int ; 41(12): 1356-1366, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28884894

RESUMO

Heavy metal ions are known to produce harmful alterations on kidney function. Specifically, the accumulation of Hg2+ in kidney tissue may induce renal failure. In this work, the protective effect of CDP-choline against the deleterious effects induced by Hg2+ on renal function was studied. CDP-choline administered ip at a dose of 125 mg/kg body weight prevented the damage induced by Hg2+ administration at a dose of 3 mg/kg body weight. The findings indicate that CDP-choline guards mitochondria against Hg2+ -toxicity by preserving their ability to retain matrix content, such as accumulated Ca2+ . This nucleotide also protected mitochondria from Hg2+ -induced loss of the transmembrane electric gradient and from the generation of hydrogen peroxide and membrane TBARS. In addition, CDP-choline avoided the oxidative damage of mtDNA and inhibited the release of the interleukins IL-1 and IL6, recognized as markers of acute inflammatory reaction. After the administration of Hg2+ and CDP, CDP-choline maintained nearly normal levels of renal function and creatinine clearance, as well as blood urea nitrogen (BUN) and serum creatinine.


Assuntos
Citidina Difosfato Colina/farmacologia , Rim/efeitos dos fármacos , Mercúrio/toxicidade , Mitocôndrias/efeitos dos fármacos , Animais , Creatina/metabolismo , Interleucina-1/metabolismo , Interleucina-6/metabolismo , Rim/metabolismo , Rim/patologia , Testes de Função Renal , Masculino , Potenciais da Membrana/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Oxirredução , Ratos , Ratos Wistar , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
8.
Biochem Cell Biol ; 95(5): 556-562, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28595020

RESUMO

In this work, we studied the protective effects of tamoxifen (TAM) on disulfiram (Dis)-induced mitochondrial membrane insult. The results indicate that TAM circumvents the inner membrane leakiness manifested as Ca2+ release, mitochondrial swelling, and collapse of the transmembrane electric gradient. Furthermore, it was found that TAM prevents inactivation of the mitochondrial enzyme aconitase and detachment of cytochrome c from the inner membrane. Interestingly, TAM also inhibited Dis-promoted generation of hydrogen peroxide. Given that TAM is an antioxidant molecule, it is plausible that its protection may be due to the inhibition of Dis-induced oxidative stress.


Assuntos
Dissulfiram/efeitos adversos , Membranas Mitocondriais/efeitos dos fármacos , Tamoxifeno/farmacologia , Animais , Cálcio/metabolismo , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar
9.
J Bacteriol ; 199(2)2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27799324

RESUMO

The multisubunit cation/proton antiporter 3 family, also called Mrp, is widely distributed in all three phylogenetic domains (Eukarya, Bacteria, and Archaea). Investigations have focused on Mrp complexes from the domain Bacteria to the exclusion of Archaea, with a consensus emerging that all seven subunits are required for Na+/H+ antiport activity. The MrpA subunit from the MrpABCDEFG Na+/H+ antiporter complex of the archaeon Methanosarcina acetivorans was produced in antiporter-deficient Escherichia coli strains EP432 and KNabc and biochemically characterized to determine the role of MrpA in the complex. Both strains containing MrpA grew in the presence of up to 500 mM NaCl and pH values up to 11.0 with no added NaCl. Everted vesicles from the strains containing MrpA were able to generate a NADH-dependent pH gradient (ΔpH), which was abated by the addition of monovalent cations. The apparent Km values for Na+ and Li+ were similar and ranged from 31 to 63 mM, whereas activity was too low to determine the apparent Km for K+ Optimum activity was obtained between pH 7.0 and 8.0. Homology molecular modeling identified two half-closed symmetry-related ion translocation channels that are linked, forming a continuous path from the cytoplasm to the periplasm, analogous to the NuoL subunit of complex I. Bioinformatics analyses revealed genes encoding homologs of MrpABCDEFG in metabolically diverse methane-producing species. Overall, the results advance the biochemical, evolutionary, and physiological understanding of Mrp complexes that extends to the domain Archaea IMPORTANCE: The work is the first reported characterization of an Mrp complex from the domain Archaea, specifically methanogens, for which Mrp is important for acetotrophic growth. The results show that the MrpA subunit is essential for antiport activity and, importantly, that not all seven subunits are required, which challenges current dogma for Mrp complexes from the domain Bacteria A mechanism is proposed in which an MrpAD subcomplex catalyzes Na+/H+ antiport independent of an MrpBCEFG subcomplex, although the activity of the former is modulated by the latter. Properties of MrpA strengthen proposals that the Mrp complex is of ancient origin and that subunits were recruited to evolve the ancestral complex I. Finally, bioinformatics analyses indicate that Mrp complexes function in diverse methanogenic pathways.


Assuntos
Proteínas Arqueais/metabolismo , Regulação da Expressão Gênica em Archaea/fisiologia , Methanosarcina/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Proteínas Arqueais/genética , Transporte Biológico , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Lítio/metabolismo , Methanosarcina/genética , Modelos Moleculares , Filogenia , Conformação Proteica , Sódio/metabolismo , Trocadores de Sódio-Hidrogênio/genética
10.
Front Physiol ; 7: 412, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27721794

RESUMO

Glycolysis provides precursors for the synthesis of macromolecules and may contribute to the ATP supply required for the constant and accelerated cellular duplication in cancer cells. In consequence, inhibition of glycolysis has been reiteratively considered as an anti-cancer therapeutic option. In previous studies, kinetic modeling of glycolysis in cancer cells allowed the identification of the main steps that control the glycolytic flux: glucose transporter, hexokinase (HK), hexose phosphate isomerase (HPI), and glycogen degradation in human cervix HeLa cancer cells and rat AS-30D ascites hepatocarcinoma. It was also previously experimentally determined that simultaneous inhibition of the non-controlling enzymes lactate dehydrogenase (LDH), pyruvate kinase (PYK), and enolase (ENO) brings about significant decrease in the glycolytic flux of cancer cells and accumulation of intermediate metabolites, mainly fructose-1,6-bisphosphate (Fru1,6BP), and dihydroxyacetone phosphate (DHAP), which are inhibitors of HK and HPI, respectively. Here it was found by kinetic modeling that inhibition of cancer glycolysis can be attained by blocking downstream non flux-controlling steps as long as Fru1,6BP and DHAP, regulatory metabolites of flux-controlling enzymes, are accumulated. Furthermore, experimental results and further modeling showed that oxamate and iodoacetate inhibitions of PYK, ENO, and glyceraldehyde3-phosphate dehydrogenase (GAPDH), but not of LDH and phosphoglycerate kinase, induced accumulation of Fru1,6BP and DHAP in AS-30D hepatoma cells. Indeed, PYK, ENO, and GAPDH exerted the highest control on the Fru1,6BP and DHAP concentrations. The high levels of these metabolites inhibited HK and HPI and led to glycolytic flux inhibition, ATP diminution, and accumulation of toxic methylglyoxal. Hence, the anticancer effects of downstream glycolytic inhibitors are very likely mediated by this mechanism. In parallel, it was also found that uncompetitive inhibition of the flux-controlling steps is a more potent mechanism than competitive and mixed-type inhibition to efficiently perturb cancer glycolysis.

11.
FEBS J ; 283(19): 3637-3650, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27521998

RESUMO

Mitochondrial aldehyde dehydrogenase (ALDH2) has been proposed as a key enzyme in cardioprotection during ischemia-reperfusion processes. This proposal led to the search for activators of ALDH2 with the aim to develop cardioprotective drugs. Alda-1 was the first activator of ALDH2 identified and its cardioprotective effect has been extensively proven in vivo; however, the mechanism of activation is not fully understood. A crystallographic study showed that Alda-1 binds to the entrance of the aldehyde-binding site; therefore, Alda-1 should in essence be an inhibitor. In the present study, kinetic experiments were performed to characterize the effect of Alda-1 on the properties of ALDH2 (kinetic parameters, determination of the rate-limiting step, reactivity of the catalytic cysteine) and on the kinetic mechanism (type of kinetics, sequence of substrates entering, and products release). The results showed that Alda-1 dramatically modifies the properties of ALDH2, the Km for NAD+ decreased by 2.4-fold, and the catalytic efficiency increased 4.4-fold; however, the Km for the aldehyde increased 8.6-fold, thus, diminishing the catalytic efficiency. The alterations in these parameters resulted in a complex behavior, where Alda-1 acts as inhibitor at low concentrations of aldehyde and as an activator at high concentrations. Additionally, the binding of Alda-1 to ALDH2 made the deacylation less limiting and diminished the pKa of the catalytic cysteine. Finally, NADH inhibition patterns indicated that Alda-1 induced a change in the sequence of substrates entry and products release, in agreement with the proposal of both substrates entering ALDH2 by the NAD+ entrance site.


Assuntos
Aldeído-Desidrogenase Mitocondrial/efeitos dos fármacos , Benzamidas/farmacologia , Benzodioxóis/farmacologia , Ativadores de Enzimas/farmacologia , Aldeído-Desidrogenase Mitocondrial/química , Aldeído-Desidrogenase Mitocondrial/metabolismo , Benzamidas/química , Benzodioxóis/química , Cisteína/química , Ativadores de Enzimas/química , Cinética
12.
Int J Biochem Cell Biol ; 65: 209-21, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26073129

RESUMO

Oxidative phosphorylation (OxPhos) is functional and sustains tumor proliferation in several cancer cell types. To establish whether mitochondrial ß-oxidation of free fatty acids (FFAs) contributes to cancer OxPhos functioning, its protein contents and enzyme activities, as well as respiratory rates and electrical membrane potential (ΔΨm) driven by FFA oxidation were assessed in rat AS-30D hepatoma and liver (RLM) mitochondria. Higher protein contents (1.4-3 times) of ß-oxidation (CPT1, SCAD) as well as proteins and enzyme activities (1.7-13-times) of Krebs cycle (KC: ICD, 2OGDH, PDH, ME, GA), and respiratory chain (RC: COX) were determined in hepatoma mitochondria vs. RLM. Although increased cholesterol content (9-times vs. RLM) was determined in the hepatoma mitochondrial membranes, FFAs and other NAD-linked substrates were oxidized faster (1.6-6.6 times) by hepatoma mitochondria than RLM, maintaining similar ΔΨm values. The contents of ß-oxidation, KC and RC enzymes were also assessed in cells. The mitochondrial enzyme levels in human cervix cancer HeLa and AS-30D cells were higher than those observed in rat hepatocytes whereas in human breast cancer biopsies, CPT1 and SCAD contents were lower than in human breast normal tissue. The presence of CPT1 and SCAD in AS-30D mitochondria and HeLa cells correlated with an active FFA utilization in HeLa cells. Furthermore, the ß-oxidation inhibitor perhexiline blocked FFA utilization, OxPhos and proliferation in HeLa and other cancer cells. In conclusion, functional mitochondria supported by FFA ß-oxidation are essential for the accelerated cancer cell proliferation and hence anti-ß-oxidation therapeutics appears as an alternative promising approach to deter malignant tumor growth.


Assuntos
Ácidos Graxos/metabolismo , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Células 3T3 , Animais , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Feminino , Células HeLa , Humanos , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/patologia , Células MCF-7 , Camundongos , Fosforilação Oxidativa , Ratos , Ratos Wistar
13.
Proteins ; 83(1): 105-16, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25354921

RESUMO

The modulation of aldehyde dehydrogenase (ALDH) activity has been suggested as a promising option for the prevention or treatment of many diseases. To date, only few activating compounds of ALDHs have been described. In this regard, N-(1,3-benzodioxol-5-ylmethyl)-2,6-dichlorobenzamide has been used to protect the heart against ischemia/reperfusion damage. In the search for new modulating ALDH molecules, the binding capability of different compounds to the active site of human aldehyde dehydrogenase class 1A1 (ALDH1A1) was analyzed by molecular docking, and their ability to modulate the activity of the enzyme was tested. Surprisingly, tamoxifen, an estrogen receptor antagonist used for breast cancer treatment, increased the activity and decreased the Km for NAD(+) by about twofold in ALDH1A1. No drug effect on human ALDH2 or ALDH3A1 was attained, showing that tamoxifen was specific for ALDH1A1. Protection against thermal denaturation and competition with daidzin suggested that tamoxifen binds to the aldehyde site of ALDH1A1, resembling the interaction of N-(1,3-benzodioxol-5-ylmethyl)-2,6-dichlorobenzamide with ALDH2. Further kinetic analysis indicated that tamoxifen activation may be related to an increase in the Kd for NADH, favoring a more rapid release of the coenzyme, which is the rate-limiting step of the reaction for this isozyme. Therefore, tamoxifen might improve the antioxidant response, which is compromised in some diseases.


Assuntos
Aldeído Desidrogenase/metabolismo , Antineoplásicos/farmacologia , Ativadores de Enzimas/farmacologia , Tamoxifeno/farmacologia , Família Aldeído Desidrogenase 1 , Antineoplásicos/química , Domínio Catalítico , Ativadores de Enzimas/química , Humanos , Cinética , Simulação de Acoplamento Molecular , NAD/metabolismo , Proteínas Recombinantes/metabolismo , Retinal Desidrogenase , Tamoxifeno/química , Termodinâmica
14.
PLoS One ; 9(10): e111585, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25356756

RESUMO

Biogenesis and recycling of iron-sulfur (Fe-S) clusters play important roles in the iron homeostasis mechanisms involved in mitochondrial function. In Saccharomyces cerevisiae, the Fe-S clusters are assembled into apoproteins by the iron-sulfur cluster machinery (ISC). The aim of the present study was to determine the effects of ISC gene deletion and consequent iron release under oxidative stress conditions on mitochondrial functionality in S. cerevisiae. Reactive oxygen species (ROS) generation, caused by H2O2, menadione, or ethanol, was associated with a loss of iron homeostasis and exacerbated by ISC system dysfunction. ISC mutants showed increased free Fe2+ content, exacerbated by ROS-inducers, causing an increase in ROS, which was decreased by the addition of an iron chelator. Our study suggests that the increment in free Fe2+ associated with ROS generation may have originated from mitochondria, probably Fe-S cluster proteins, under both normal and oxidative stress conditions, suggesting that Fe-S cluster anabolism is affected. Raman spectroscopy analysis and immunoblotting indicated that in mitochondria from SSQ1 and ISA1 mutants, the content of [Fe-S] centers was decreased, as was formation of Rieske protein-dependent supercomplex III2IV2, but this was not observed in the iron-deficient ATX1 and MRS4 mutants. In addition, the activity of complexes II and IV from the electron transport chain (ETC) was impaired or totally abolished in SSQ1 and ISA1 mutants. These results confirm that the ISC system plays important roles in iron homeostasis, ROS stress, and in assembly of supercomplexes III2IV2 and III2IV1, thus affecting the functionality of the respiratory chain.


Assuntos
Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Ferro/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Aerobiose/efeitos dos fármacos , Proteínas Ferro-Enxofre/genética , Cinética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mutação/genética , Oxidantes/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento
15.
Metallomics ; 6(3): 604-16, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24464102

RESUMO

The phytochelatin synthase from photosynthetic Euglena gracilis (EgPCS) was analyzed at the transcriptional, kinetic, functional, and phylogenetic levels. Recombinant EgPCS was a monomeric enzyme able to synthesize, in the presence of Zn(2+) or Cd(2+), phytochelatin2-phytochelatin4 (PC2-PC4) using GSH or S-methyl-GS (S-methyl-glutathione), but not γ-glutamylcysteine or PC2 as a substrate. Kinetic analysis of EgPCS firmly established a two-substrate reaction mechanism for PC2 synthesis with Km values of 14-22 mM for GSH and 1.6-2.5 µM for metal-bis-glutathionate (Me-GS2). EgPCS showed the highest Vmax and catalytic efficiency with Zn-(GS)2, and was inactivated by peroxides. The EgPCS N-terminal domain showed high similarity to that of other PCSases, in which the typical catalytic core (Cys-70, His-179 and Asp-197) was identified. In contrast, the C-terminal domain showed no similarity to other PCSases. An EgPCS mutant comprising only the N-terminal 235 amino acid residues was inactive, suggesting that the C-terminal domain is essential for activity/stability. EgPCS transcription in Euglena cells was not modified by Cd(2+), whereas its heterologous expression in ycf-1 yeast cells provided resistance to Cd(2+) stress. Phylogenetic analysis of the N-terminal domain showed that EgPCS is distant from plants and other photosynthetic organisms, suggesting that it evolved independently. Although EgPCS showed typical features of PCSases (constitutive expression; conserved N-terminal domain; kinetic mechanism), it also exhibited distinct characteristics such as preference for Zn-(GS)2 over Cd-(GS)2 as a co-substrate, a monomeric structure, and ability to solely synthesize short-chain PCs, which may be involved in conferring enhanced heavy-metal resistance.


Assuntos
Aminoaciltransferases/metabolismo , Euglena gracilis/enzimologia , Glutationa/metabolismo , Zinco/metabolismo , Sequência de Aminoácidos , Aminoaciltransferases/química , Aminoaciltransferases/genética , Euglena gracilis/química , Euglena gracilis/genética , Euglena gracilis/metabolismo , Glutationa/química , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Zinco/química
16.
FEMS Yeast Res ; 13(8): 804-19, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24028658

RESUMO

Ethanol accumulation during fermentation contributes to the toxic effects in Saccharomyces cerevisiae, impairing its viability and fermentative capabilities. The iron-sulfur (Fe-S) cluster biogenesis is encoded by the ISC genes. Reactive oxygen species (ROS) generation is associated with iron release from Fe-S-containing enzymes. We evaluated ethanol toxicity, ROS generation, antioxidant response and mitochondrial integrity in S. cerevisiae ISC mutants. These mutants showed an impaired tolerance to ethanol. ROS generation increased substantially when ethanol accumulated at toxic concentrations under the fermentation process. At the cellular and mitochondrial levels, ROS were increased in yeast treated with ethanol and increased to a higher level in the ssq1∆, isa1∆, iba57∆ and grx5∆ mutants - hydrogen peroxide and superoxide were the main molecules detected. Additionally, ethanol treatment decreased GSH/GSSG ratio and increased catalase activity in the ISC mutants. Examination of cytochrome c integrity indicated that mitochondrial apoptosis was triggered following ethanol treatment. The findings indicate that the mechanism of ethanol toxicity occurs via ROS generation dependent on ISC assembly system functionality. In addition, mutations in the ISC genes in S. cerevisiae contribute to the increase in ROS concentration at the mitochondrial and cellular level, leading to depletion of the antioxidant responses and finally to mitochondrial apoptosis.


Assuntos
Etanol/metabolismo , Ferro/metabolismo , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/metabolismo , Enxofre/metabolismo , Apoptose/efeitos dos fármacos , Etanol/toxicidade , Fermentação , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Mutação , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
Environ Sci Pollut Res Int ; 20(6): 3946-55, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23649544

RESUMO

Several native plants, able to grow in an unconfined mining impacted area that is now in close vicinity with urban areas, were evaluated for their ability to accumulate heavy metals. The main soil contaminants were As, Pb, Cu, and Zn. Sampling of the rhizospheric metal polluted soil showed that Euphorbia prostrata Aiton, Parthenium incanum Kunth, and Zinnia acerosa (DC.) A. Gray were able to grow in the presence of high amounts of mixtures of these elements. The plants accumulated the metals in the above ground parts and increased the synthesis of thiol molecules. E. prostrata showed the highest capacity for accumulation of the mixture of elements (588 µg g DW(-1)). Analysis of the thiol-molecules profile showed that these plants synthesized high amounts of long-chain phytochelatins, accompanied by low amounts of monothiol molecules, which may be related to their higher resistance to As and heavy metals. The three plants showed translocation factors from roots to leaves >1 for As, Pb, Cu, and Zn. Thus, by periodically removing aerial parts, these plants could be useful for the phytoremediation of semi-arid and arid mining impacted areas, in which metal hyper-accumulator plants are not able to grow.


Assuntos
Arsênio/metabolismo , Cobre/metabolismo , Chumbo/metabolismo , Mineração , Fitoquelatinas/biossíntese , Zinco/metabolismo , Biodegradação Ambiental , Euphorbia/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Poluentes do Solo/metabolismo
18.
Proteins ; 81(8): 1330-9, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23444097

RESUMO

Aldehyde dehydrogenases (ALDHs) couple the oxidation of aldehydes to the reduction of NAD(P)(+) . These enzymes have gained importance as they have been related to the detoxification of aldehydes generated in several diseases involving oxidative stress. It has been determined that tetrameric ALDHs work only with two of their four active sites (half-of-the-sites reactivity), but the mechanistic reason for this feature remains unknown. In this study, tetrameric human aldehyde dehydrogenase class 1A1 (ALDH1A1) was dimerized to study the correlation of the oligomeric structure with the presence of half-of-the-sites reactivity. Stable dimers from ALDH1A1 were generated by combining the mutation of two residues of the dimer-dimer interface in the tetramer (previously shown to render a low-active and unstable enzyme) and the fusion of green fluorescent protein (GFP) in the C-terminus of the mutant. Some kinetic properties of the GFP-fusion mutant resembled those of human aldehyde dehydrogenase class 3A1, a native dimer, in that the fusion dimer did not show burst in the generation of nicotinamide adenine dinucleotide (NADH) and was less sensitive to the action of specific modulators. The presence of primary isotope effect indicated that the rate-limiting step changed from NADH release to hydride transfer. The mutant showed higher activity with malondialdehyde and acrolein and was more resistant to inactivation by acrolein compared with the wild type. The mutant kinetic profile showed two hyperbolic components when the substrates were varied, suggesting the presence of two active sites with different affinities and catalytic capacities. In conclusion, the ALDH1A1-GFP dimeric mutant exhibits full site reactivity, suggesting that only the tetrameric structure induces the half-of-the-sites reactivity.


Assuntos
Aldeído Desidrogenase/química , Aldeído Desidrogenase/metabolismo , Aldeído Desidrogenase/genética , Família Aldeído Desidrogenase 1 , Ativação Enzimática , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Multimerização Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Retinal Desidrogenase
19.
Chem Res Toxicol ; 25(3): 722-9, 2012 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-22339434

RESUMO

Aldehyde dehydrogenases (ALDHs) are involved in the detoxification of aldehydes generated as byproducts of lipid peroxidation. In this work, it was determined that, among the three most studied human ALDH isoforms, ALDH2 showed the highest catalytic efficiency for oxidation of acrolein, 4-hydroxy-2-nonenal (4-HNE), and malondialdehyde. ALDH1A1 also exhibited significant activity with these substrates, whereas ALDH3A1 only showed activity with 4-HNE. ALDH2 was also the most sensitive isoform to irreversible inactivation by these compounds. Remarkably, ALDH3A1 was insensitive to these aldehydes even at concentrations as high as 20 mM. Formation of adducts of ALDH1A1 and ALDH2 with acrolein increased their K(d) values for NAD(+) by 2- and 3-fold, respectively. NADH exerted a higher protection than propionaldehyde to the inactivation by acrolein, and this protection was additive. These results suggested that both binding sites, those for aldehyde and NAD(+) in ALDH2, are targets for the inactivation by lipid peroxidation products. Thus, with the advantage of being relatively inactivation-insensitive, ALDH1A1 and ALDH3A1 may be actively participating in the detoxification of these aldehydes in the cells.


Assuntos
Acroleína/metabolismo , Aldeído Desidrogenase/metabolismo , Aldeídos/metabolismo , Malondialdeído/metabolismo , Aldeído Desidrogenase/genética , Família Aldeído Desidrogenase 1 , Aldeído-Desidrogenase Mitocondrial , Sequência de Aminoácidos , Humanos , Peroxidação de Lipídeos , Dados de Sequência Molecular , Proteínas Recombinantes/metabolismo , Retinal Desidrogenase , Alinhamento de Sequência
20.
J Bioenerg Biomembr ; 43(5): 519-30, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21833603

RESUMO

Ethanol is one of the most efficient carbon sources for Euglena gracilis. Thus, an in-depth investigation of the distribution of ethanol metabolizing enzymes in this organism was conducted. Cellular fractionation indicated localization of the ethanol metabolizing enzymes in both cytosol and mitochondria. Isolated mitochondria were able to generate a transmembrane electrical gradient (Δψ) after the addition of ethanol. However, upon the addition of acetaldehyde no Δψ was formed. Furthermore, acetaldehyde collapsed Δψ generated by ethanol or malate but not by D-lactate. Pyrazole, a specific inhibitor of alcohol dehydrogenase (ADH), abolished the effect of acetaldehyde on Δψ, suggesting that the mitochondrial ADH, by actively consuming NADH to reduce acetaldehyde to ethanol, was able to collapse Δψ. When mitochondria were fractionated, 27% and 60% of ADH and aldehyde dehydrogenase (ALDH) activities were found in the inner membrane fraction. ADH activity showed two kinetic components, suggesting the presence of two isozymes in the membrane fraction, while ALDH kinetics was monotonic. The ADH Km values were 0.64-6.5 mM for ethanol, and 0.16-0.88 mM for NAD+, while the ALDH Km values were 1.7-5.3 µM for acetaldehyde and 33-47 µM for NAD+. These novel enzymes were also able to use aliphatic substrates of different chain length and could be involved in the metabolism of fatty alcohol and aldehydes released from wax esters stored by this microorganism.


Assuntos
Etanol/metabolismo , Euglena gracilis/enzimologia , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Oxirredutases/metabolismo , Proteínas de Protozoários/metabolismo , Potencial da Membrana Mitocondrial/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...