Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 59(32): 2934-2945, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32786405

RESUMO

The phosphatidyl-myo-inositol mannosyltransferase A (PimA) is an essential peripheral membrane glycosyltransferase that initiates the biosynthetic pathway of phosphatidyl-myo-inositol mannosides (PIMs), key structural elements and virulence factors of Mycobacterium tuberculosis. PimA undergoes functionally important conformational changes, including (i) α-helix-to-ß-strand and ß-strand-to-α-helix transitions and (ii) an "open-to-closed" motion between the two Rossmann-fold domains, a conformational change that is necessary to generate a catalytically competent active site. In previous work, we established that GDP-Man and GDP stabilize the enzyme and facilitate the switch to a more compact active state. To determine the structural contribution of the mannose ring in such an activation mechanism, we analyzed a series of chemical derivatives, including mannose phosphate (Man-P) and mannose pyrophosphate-ribose (Man-PP-RIB), and additional GDP derivatives, such as pyrophosphate ribose (PP-RIB) and GMP, by the combined use of X-ray crystallography, limited proteolysis, circular dichroism, isothermal titration calorimetry, and small angle X-ray scattering methods. Although the ß-phosphate is present, we found that the mannose ring, covalently attached to neither phosphate (Man-P) nor PP-RIB (Man-PP-RIB), does promote the switch to the active compact form of the enzyme. Therefore, the nucleotide moiety of GDP-Man, and not the sugar ring, facilitates the "open-to-closed" motion, with the ß-phosphate group providing the high-affinity binding to PimA. Altogether, the experimental data contribute to a better understanding of the structural determinants involved in the "open-to-closed" motion not only observed in PimA but also visualized and/or predicted in other glycosyltransfeases. In addition, the experimental data might prove to be useful for the discovery and/or development of PimA and/or glycosyltransferase inhibitors.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Manosiltransferases/química , Manosiltransferases/metabolismo , Movimento , Manose/metabolismo , Modelos Moleculares , Conformação Proteica
2.
J Biol Chem ; 295(29): 9868-9878, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32434931

RESUMO

Fold-switch pathways remodel the secondary structure topology of proteins in response to the cellular environment. It is a major challenge to understand the dynamics of these folding processes. Here, we conducted an in-depth analysis of the α-helix-to-ß-strand and ß-strand-to-α-helix transitions and domain motions displayed by the essential mannosyltransferase PimA from mycobacteria. Using 19F NMR, we identified four functionally relevant states of PimA that coexist in dynamic equilibria on millisecond-to-second timescales in solution. We discovered that fold-switching is a slow process, on the order of seconds, whereas domain motions occur simultaneously but are substantially faster, on the order of milliseconds. Strikingly, the addition of substrate accelerated the fold-switching dynamics of PimA. We propose a model in which the fold-switching dynamics constitute a mechanism for PimA activation.


Assuntos
Proteínas de Bactérias/química , Manosiltransferases/química , Simulação de Dinâmica Molecular , Mycobacterium smegmatis/enzimologia , Dobramento de Proteína , Ressonância Magnética Nuclear Biomolecular
3.
Structure ; 25(7): 1034-1044.e3, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28625787

RESUMO

Glycosyltransferases (GTs) play a central role in nature. They catalyze the transfer of a sugar moiety to a broad range of acceptor substrates. GTs are highly selective enzymes, allowing the recognition of subtle structural differences in the sequences and stereochemistry of their sugar and acceptor substrates. We report here a series of structural snapshots of the reaction center of the retaining glucosyl-3-phosphoglycerate synthase (GpgS). During this sequence of events, we visualize how the enzyme guides the substrates into the reaction center where the glycosyl transfer reaction takes place, and unveil the mechanism of product release, involving multiple conformational changes not only in the substrates/products but also in the enzyme. The structural data are further complemented by metadynamics free-energy calculations, revealing how the equilibrium of loop conformations is modulated along these itineraries. The information reported here represent an important contribution for the understanding of GT enzymes at the molecular level.


Assuntos
Domínio Catalítico , Glucosiltransferases/química , Glucosiltransferases/metabolismo , Simulação de Dinâmica Molecular , Ligação Proteica , Especificidade por Substrato
4.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(11): 1355-1367, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27826050

RESUMO

Phosphatidyl-myo-inositol mannosides (PIMs) are glycolipids of unique chemical structure found in the inner and outer membranes of the cell envelope of all Mycobacterium species. The PIM family of glycolipids comprises phosphatidyl-myo-inositol mono-, di-, tri-, tetra-, penta-, and hexamannosides with different degrees of acylation. PIMs are considered not only essential structural components of the cell envelope but also the precursors of lipomannan and lipoarabinomannan, two major lipoglycans implicated in host-pathogen interactions. Since the description of the complete chemical structure of PIMs, major efforts have been committed to defining the molecular bases of its biosynthetic pathway. The structural characterization of the integral membrane phosphatidyl-myo-inositol phosphate synthase (PIPS), and that of three enzymes working at the protein-membrane interface, the phosphatidyl-myo-inositol mannosyltransferases A and B, and the acyltransferase PatA, established the basis of the early steps of the PIM pathway at the molecular level. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.


Assuntos
Lipogênese , Mycobacterium/metabolismo , Fosfatidilinositóis/biossíntese , Aciltransferases/química , Aciltransferases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Glicosiltransferases/química , Glicosiltransferases/metabolismo , Manosiltransferases/química , Manosiltransferases/metabolismo , Modelos Moleculares , Fosfatidilinositóis/química , Conformação Proteica , Relação Estrutura-Atividade , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo
5.
J Biol Chem ; 291(27): 13955-13963, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27189944

RESUMO

Phosphatidyl-myo-inositol mannosyltransferase A (PimA) is an essential glycosyltransferase that initiates the biosynthetic pathway of phosphatidyl-myo-inositol mannoside, lipomannan, and lipoarabinomannan, which are key glycolipids/lipoglycans of the mycobacterial cell envelope. PimA belongs to a large family of membrane-associated glycosyltransferases for which the understanding of the molecular mechanism and conformational changes that govern substrate/membrane recognition and catalysis remains a major challenge. Here, we determined that PimA preferentially binds to negatively charged phosphatidyl-myo-inositol substrate and non-substrate membrane model systems (small unilamellar vesicle) through its N-terminal domain, inducing an important structural reorganization of anionic phospholipids. By using a combination of single-point mutagenesis, circular dichroism, and a variety of fluorescence spectroscopy techniques, we determined that this interaction is mainly mediated by an amphipathic α-helix (α2), which undergoes a substantial conformational change and localizes in the vicinity of the negatively charged lipid headgroups and the very first carbon atoms of the acyl chains, at the PimA-phospholipid interface. Interestingly, a flexible region within the N-terminal domain, which undergoes ß-strand-to-α-helix and α-helix-to-ß-strand transitions during catalysis, interacts with anionic phospholipids; however, the effect is markedly less pronounced to that observed for the amphipathic α2, likely reflecting structural plasticity/variability. Altogether, we propose a model in which conformational transitions observed in PimA might reflect a molten globule state that confers to PimA, a higher affinity toward the dynamic and highly fluctuating lipid bilayer.


Assuntos
Proteínas de Bactérias/metabolismo , Manosiltransferases/metabolismo , Proteínas de Membrana/metabolismo , Mycobacterium smegmatis/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Dicroísmo Circular , Escherichia coli/genética , Manosiltransferases/química , Manosiltransferases/genética , Proteínas de Membrana/química , Modelos Moleculares , Fosfolipídeos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta
6.
Angew Chem Int Ed Engl ; 54(34): 9898-902, 2015 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26136334

RESUMO

Glycosyltransferases (GTs) comprise a prominent family of enzymes that play critical roles in a variety of cellular processes, including cell signaling, cell development, and host-pathogen interactions. Glycosyl transfer can proceed with either inversion or retention of the anomeric configuration with respect to the reaction substrates and products. The elucidation of the catalytic mechanism of retaining GTs remains a major challenge. A native ternary complex of a GT in a productive mode for catalysis is reported, that of the retaining glucosyl-3-phosphoglycerate synthase GpgS from M. tuberculosis in the presence of the sugar donor UDP-Glc, the acceptor substrate phosphoglycerate, and the divalent cation cofactor. Through a combination of structural, chemical, enzymatic, molecular dynamics, and quantum-mechanics/molecular-mechanics (QM/MM) calculations, the catalytic mechanism was unraveled, thereby providing a strong experimental support for a front-side substrate-assisted SN i-type reaction.


Assuntos
Biocatálise , Glicosiltransferases/química , Glicosiltransferases/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Teoria Quântica
7.
Nat Chem Biol ; 11(1): 16-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25402770

RESUMO

Secondary structure refolding is a key event in biology as it modulates the conformation of many proteins in the cell, generating functional or aberrant states. The crystal structures of mannosyltransferase PimA reveal an exceptional flexibility of the protein along the catalytic cycle, including ß-strand-to-α-helix and α-helix-to-ß-strand transitions. These structural changes modulate catalysis and are promoted by interactions of the protein with anionic phospholipids in the membrane.


Assuntos
Proteínas de Bactérias/química , Membrana Celular/metabolismo , Glicosiltransferases/metabolismo , Manosiltransferases/química , Estrutura Secundária de Proteína , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Membrana Celular/enzimologia , Cristalografia por Raios X , Humanos , Manosiltransferases/genética , Manosiltransferases/isolamento & purificação , Modelos Moleculares , Mutagênese Sítio-Dirigida , Fosfolipídeos/metabolismo , Estrutura Secundária de Proteína/genética
8.
ACS Chem Biol ; 9(7): 1567-75, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24877756

RESUMO

The emergence of multidrug- and extensively drug-resistant strains of Mycobacterium tuberculosis highlights the need to discover new antitubercular agents. Here we describe the synthesis and characterization of a new series of thienopyrimidine (TP) compounds that kill both replicating and non-replicating M. tuberculosis. The strategy to determine the mechanism of action of these TP derivatives was to generate resistant mutants to the most effective compound TP053 and to isolate the genetic mutation responsible for this phenotype. The only non-synonymous mutation found was a g83c transition in the Rv2466c gene, resulting in the replacement of tryptophan 28 by a serine. The Rv2466c overexpression increased the sensitivity of M. tuberculosis wild-type and resistant mutant strains to TP053, indicating that TP053 is a prodrug activated by Rv2466c. Biochemical studies performed with purified Rv2466c demonstrated that only the reduced form of Rv2466c can activate TP053. The 1.7 Å resolution crystal structure of the reduced form of Rv2466c, a protein whose expression is transcriptionally regulated during the oxidative stress response, revealed a unique homodimer in which a ß-strand is swapped between the thioredoxin domains of each subunit. A pronounced groove harboring the unusual active-site motif CPWC might account for the uncommon reactivity profile of the protein. The mutation of Trp28Ser clearly predicts structural defects in the thioredoxin fold, including the destabilization of the dimerization core and the CPWC motif, likely impairing the activity of Rv2466c against TP053. Altogether our experimental data provide insights into the molecular mechanism underlying the anti-mycobacterial activity of TP-based compounds, paving the way for future drug development programmes.


Assuntos
Antituberculosos/química , Farmacorresistência Bacteriana Múltipla , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Pirimidinas/química , Antituberculosos/farmacologia , Desenho de Fármacos , Genes Bacterianos , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Mycobacterium tuberculosis/crescimento & desenvolvimento , Pirimidinas/farmacologia , Tuberculose/tratamento farmacológico
9.
J Biol Chem ; 288(41): 29797-808, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-23963451

RESUMO

Phosphatidyl-myo-inositol mannosyltransferase A (PimA) is an essential glycosyltransferase (GT) that initiates the biosynthetic pathway of phosphatidyl-myo-inositol mannosides, lipomannan, and lipoarabinomannan, which are key glycolipids/lipoglycans of the mycobacterial cell envelope. PimA belongs to a large family of peripheral membrane-associated GTs for which the understanding of the molecular mechanism and conformational changes that govern substrate/membrane recognition and catalysis remains a major challenge. Here we used single molecule force spectroscopy techniques to study the mechanical and conformational properties of PimA. In our studies, we engineered a polyprotein containing PimA flanked by four copies of the well characterized I27 protein, which provides an unambiguous mechanical fingerprint. We found that PimA exhibits weak mechanical stability albeit displaying ß-sheet topology expected to unfold at much higher forces. Notably, PimA unfolds following heterogeneous multiple step mechanical unfolding pathways at low force akin to molten globule states. Interestingly, the ab initio low resolution envelopes obtained from small angle x-ray scattering of the unliganded PimA and the PimA·GDP complexed forms clearly demonstrate that not only the "open" and "closed" conformations of the GT-B enzyme are largely present in solution, but in addition, PimA experiences remarkable flexibility that undoubtedly corresponds to the N-terminal "Rossmann fold" domain, which has been proved to participate in protein-membrane interactions. Based on these results and on our previous experimental data, we propose a model wherein the conformational transitions are important for the mannosyltransferase to interact with the donor and acceptor substrates/membrane.


Assuntos
Proteínas de Bactérias/química , Manosiltransferases/química , Mycobacterium smegmatis/enzimologia , Conformação Proteica , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Genes Essenciais/genética , Guanosina Difosfato/química , Guanosina Difosfato/metabolismo , Manosiltransferases/genética , Manosiltransferases/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microscopia de Força Atômica/métodos , Modelos Moleculares , Dados de Sequência Molecular , Mycobacterium smegmatis/genética , Ligação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Desdobramento de Proteína , Espalhamento a Baixo Ângulo , Estresse Mecânico , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...