Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 126(Pt 22): 5116-31, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24046443

RESUMO

Adult muscle stem cells and their committed myogenic precursors, commonly referred to as the satellite cell population, are involved in both muscle growth after birth and regeneration after damage. It has been previously proposed that, under these circumstances, satellite cells first become activated, divide and differentiate, and only later fuse to the existing myofiber through M-cadherin-mediated intercellular interactions. Our data show that satellite cells fuse with the myofiber concomitantly to cell division, and only when the nuclei of the daughter cells are inside the myofiber, do they complete the process of differentiation. Here we demonstrate that M-cadherin plays an important role in cell-to-cell recognition and fusion, and is crucial for cell division activation. Treatment of satellite cells with M-cadherin in vitro stimulates cell division, whereas addition of anti-M-cadherin antibodies reduces the cell division rate. Our results suggest an alternative model for the contribution of satellite cells to muscle development, which might be useful in understanding muscle regeneration, as well as muscle-related dystrophies.


Assuntos
Caderinas/metabolismo , Comunicação Celular/genética , Desenvolvimento Muscular/genética , Músculo Esquelético/crescimento & desenvolvimento , Células Satélites de Músculo Esquelético/citologia , Animais , Anticorpos , Caderinas/administração & dosagem , Caderinas/antagonistas & inibidores , Diferenciação Celular/genética , Divisão Celular/genética , Distrofina/genética , Humanos , Camundongos , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Xenopus
2.
Development ; 139(14): 2557-65, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22675213

RESUMO

Bone morphogenetic protein (Bmp) signalling has been implicated in setting up dorsoventral patterning of the vertebrate limb and in its outgrowth. Here, we present evidence that Bmp signalling or, more precisely, its inhibition also plays a role in limb and fin bud initiation. Temporary inhibition of Bmp signalling either by overexpression of noggin or using a synthetic Bmp inhibitor is sufficient to induce extra limbs in the Xenopus tadpole or exogenous fins in the Danio rerio embryo, respectively. We further show that Bmp signalling acts in parallel with retinoic acid signalling, possibly by inhibiting the known limb-inducing gene wnt2ba.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Xenopus laevis/crescimento & desenvolvimento , Peixe-Zebra/crescimento & desenvolvimento , Animais , Western Blotting , Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Proteínas de Transporte , Extremidades/crescimento & desenvolvimento , Hibridização In Situ , Pirazóis/farmacologia , Pirimidinas/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Regeneração/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Xenopus laevis/metabolismo , Peixe-Zebra/metabolismo
3.
BMC Dev Biol ; 12: 9, 2012 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-22369050

RESUMO

BACKGROUND: Mammals are not able to restore lost appendages, while many amphibians are. One important question about epimorphic regeneration is related to the origin of the new tissues and whether they come from mature cells via dedifferentiation and/or from stem cells. Several studies in urodele amphibians (salamanders) indicate that, after limb or tail amputation, the multinucleated muscle fibres do dedifferentiate by fragmentation and proliferation, thereby contributing to the regenerate. In Xenopus laevis tadpoles, however, it was shown that muscle fibres do not contribute directly to the tail regenerate. We set out to study whether dedifferentiation was present during muscle regeneration of the tadpole limb and zebrafish larval tail, mainly by cell tracing and histological observations. RESULTS: Cell tracing and histological observations indicate that zebrafish tail muscle do not dedifferentiate during regeneration. Technical limitations did not allow us to trace tadpole limb cells, nevertheless we observed no signs of dedifferentiation histologically. However, ultrastructural and gene expression analysis of regenerating muscle in tadpole tail revealed an unexpected dedifferentiation phenotype. Further histological studies showed that dedifferentiating tail fibres did not enter the cell cycle and in vivo cell tracing revealed no evidences of muscle fibre fragmentation. In addition, our results indicate that this incomplete dedifferentiation was initiated by the retraction of muscle fibres. CONCLUSIONS: Our results show that complete skeletal muscle dedifferentiation is less common than expected in lower vertebrates. In addition, the discovery of incomplete dedifferentiation in muscle fibres of the tadpole tail stresses the importance of coupling histological studies with in vivo cell tracing experiments to better understand the regenerative mechanisms.


Assuntos
Larva/fisiologia , Músculo Esquelético/fisiologia , Regeneração , Xenopus/fisiologia , Peixe-Zebra/fisiologia , Animais , Ciclo Celular , Desdiferenciação Celular , Rastreamento de Células , Extremidades/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Larva/citologia , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Cauda/citologia , Cauda/fisiologia , Xenopus/metabolismo , Peixe-Zebra/metabolismo
4.
J Cardiovasc Transl Res ; 4(2): 121-30, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21088946

RESUMO

Reprogramming of pig somatic cells to induced pluripotent stem cells provides a tremendous advance in the field of regenerative medicine since the pig represents an ideal large animal model for the preclinical testing of emerging cell therapies. However, the current generation of pig-induced pluripotent stem cells (piPSCs) require the use of time-consuming and laborious retroviral or lentiviral transduction approaches, in order to ectopically express the pluripotency-associated transcription factors Oct4, Sox2, Klf4 and c-Myc, in the presence of feeder cells. Here, we describe a simple method to produce piPSC with a single transfection of a CAG-driven polycistronic plasmid expressing Oct4, Sox2, Klf4, c-Myc and a green fluorescent protein (GFP) reporter gene, in gelatine-coated plates, with or without feeder cells. In our system, the derivation of piPSCs from adult pig ear fibroblasts on a gelatine coating showed a higher efficiency and rate of reprogramming when compared with three consecutive retroviral transductions of a similar polycistronic construct. Our piPSCs expressed the classical embryonic stem cell markers, exhibit a stable karyotype and formed teratomas. Moreover, we also developed a simple method to generate in vitro spontaneous beating cardiomiocyte-like cells from piPSCs. Overall, our preliminary results set the bases for the massive production of xeno-free and integration-free piPSCs and provide a powerful tool for the preclinical application of iPSC technology in a large animal setting.


Assuntos
Fibroblastos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Transplante de Células-Tronco , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Reprogramação Celular , Técnicas de Cocultura , Feminino , Fibroblastos/patologia , Fibroblastos/transplante , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Células-Tronco Pluripotentes Induzidas/transplante , Cariotipagem , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Suínos , Teratoma/metabolismo , Teratoma/patologia , Fatores de Tempo , Transdução Genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...